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ABSTRACT

Recently Deep Learning based Access Control (DLBAC) model has
been developed to reduce the burden of access control model engi-
neering on a human administrator, while managing accurate access
control state in large, complex, and dynamic systems. DLBAC uti-
lizes neural networks for addressing access control requirements of
a system based on user and resource metadata. However, in today’s
rapidly evolving, dynamic, and complex world with billions of con-
nected users and devices, there are various environmental aspects
in different application domains that affect access control rights
and decisions. While Attribute-Based Access Control (ABAC) have
captured environmental factors through environmental attributes,
DLBAC still lacks the capabilities of capturing any environmental
factors and its use in access control decision making. In this paper,
we propose an environment aware deep learning based access con-
trol model (DLBAC-Env) which includes environmental metadata
in addition to user and resource metadata. We present an Indus-
trial Internet of Things (IIoT) use case to demonstrate the need
for DLBAC-Env and show how different types of environmental
aspects in a specific domain are necessary towards making dynamic
and autonomous access control decisions. We enhance the DLBAC
model and dataset to incorporate environmental metadata and then
implement and evaluate our DLBAC-Env model. We also present a
reference implementation of DLBAC-Env in an edge cloudlet using
AWS Greengrass.
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1 INTRODUCTION AND MOTIVATION

In the highly dynamic and rapidly evolving world of today, there is
a need for an autonomous and dynamic access control approach
that reduces the load of access control engineering and policy min-
ing on a human administrator. Towards this aim, Nobi et al have
developed a Deep Learning Based Access Control (DLBAC) model
[23] leveraging the advances in Deep Learning (DL) that enables
autonomous and dynamic access control in any domain. DLBAC
reduces the burden of access control engineering on human admin-
istrators and addresses issues, such as over provisioning or under
provisioning permissions in a system. Currently, DLBAC model
is based on users’ and resources’ metadata and makes an access
control decision (specific operation allowed or denied) based on
the input given to the model. The input dataset include user and
resource metadata, operations and some constraints, however, DL-
BAC still lacks the capability to capture the dynamic environmental
aspects or factors in which users and resources exists and operate
within a system.

In any application domain, environmental or contextual infor-
mation are essential aspects of the access control mechanism being
used in that domain/system. A user’s or subject’s access on re-
quested objects is not just dependent on the user and object but
also the environment in which the user and object reside as well
as specific environmental conditions at the time access is being
requested. Some of these environmental factors could be time, lo-
cation, and state of system [29]. Attribute-Based Access Control



SaT-CPS ’24, June 21, 2024, Porto, Portugal

Environmental Metadata—
ThreatLevel

Weather Sensor

Pankaj Chhetri et al.

Boiler Room

]
\ Gas Sensor H
N . [LITTT 1
Users z H
Workers Manager i _ »: = =]
®_©0 ’ [TIIID
| O i
. I »i 000
H R ! H 1
Site Supervisor : 1 _— -
: p— O H
| .
. S .
. Boiler !
Different users have different levelof - ~ =~ |l==—m—m—ece oo !
access on devices and sensors S . .
PR SS Oil Pump Site
Tem SAe,nsor RN < | Flood Sensor Humidity Sensor
P- So : [T [TIILT
annnne
A = - =
H H Pressure Sensor H H H =
= = [IIII]] - - -
- - - LARRR]) (ALR N
(LR -
LLLLLL - '\ﬂ '\ﬁ
=W = W
= | . |
Pipeline H = T 1
! | | i
]
Oil Tank i
Oil Pumps

Figure 1: A Industrial IoT Use Case with Different Types of Users, Sensors, Pumps, and Machinery

(ABAC) [18, 19] model incorporates environmental aspects as envi-
ronmental attributes which basically represent the environmental
conditions or characteristics of the system and are used while defin-
ing access control policies. Environmental conditions or contextual
information can be activated during an entire session in a system or
can be based on changing contexts or conditions, such as tempera-
ture, ambient noise, and need to be checked at the time of access
request [12]. It is essential for a deep learning based access control
model to incorporate such environmental or contextual informa-
tion to provide a comprehensive, dynamic and autonomous access
control mechanism for a system. The neural network based access
control model needs to capture dynamic environmental conditions
through environmental metadata and include this information in
the access control decision making process.

1.1 Motivation

We present an Industrial Internet of Things (IIoT) use case about
a smart oil factory, as shown in Figure 1, to motivate the need for
incorporating the environmental information in DLBAC model.
IoT is highly dynamic domain which includes various components,
such as users, devices, cloud and edge computing components, such
as gateways, applications, and all of these working in continuously
changing environments or contexts. For instance, as shown in Fig-
ure 1, there are various users (e.g., plant workers, managers, site
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supervisor, etc.), resources such as wireless sensors and factory
equipment, e.g., oil pumps, tanks, temperature sensors, and the
working environment in a smart factory, which is captured using
temperature, humidity, pressure level, oxygen level sensors, and gas
and weather sensors to monitor environment in the boiler room,
pump room, and pump site. Since each of the sensors and smart
devices are associated with critical operations within the factory,
any abnormal changes in the environment can affect the access
control decisions. Any abnormal behavior, either user or device
level, or environmental factors, constitutes an elevated threat level
in the factory. For example, if there is a weather advisory warning
(e.g., flooding, wind storm), then access to certain resources will be
restricted for some or all the users.

Another scenario that requires autonomous and on-demand
changes in access control decisions based on environmental factors
would be when the threat level of the factory is triggered based on
the data collected by environmental sensors. For instance, the tem-
perature sensor senses unusually high temperatures in the Boiler
room, and the threat level is set high. There might be a fire situation
in the factory, so if the threat level is high, then certain operations
for some or all users would be denied (e.g., restrict all access to
the boiler rooms, any oil pumps or tanks, and allow access to site
supervisor only to restricted areas for checking the sensors or other
devices). Using such environmental metadata, we can define ac-
cess control rules for specific users and resources and automatically
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grant or deny operations based on dynamic environmental changes,
as shown in the IIoT use case.

To incorporate the environmental information in the DLBAC
model, in this paper, we propose an environment aware DLBAC
approach by adding environmental metadata, known as DLBAC-
Env. These environmental metadata are independent of the user and
resource metadata and rather capture different types of contextual
aspects or environmental conditions related to various application
domains including cloud computing, Internet of Things (IoT), or any
other domain. Every domain has different types of users, resources,
devices, and different types of contexts or environments. Access
Control (AC) needs for different types of domains, such as IoT,
which has various sub application domains within it including
but not limited to Medical IoT, Vehicular IoT, and Industrial IoT,
depends on users and resources or devices, and different types
of environment these users and resources/devices are operating
in, therefore, metadata for various entities including users, IoT
devices, and specific environment metadata must be taken into
consideration towards making dynamic access control decisions.

To develop our environment aware DLBAC model (DLBAC-Env),
we extend the DLBAC model to include the environmental meta-
data by generating a dataset that includes environmental metadata,
and then define a set of access control rules based on these envi-
ronmental metadata, user metadata, and resource metadata. The
updated dataset includes additional environmental metadata and
authorization tuples based on the new rules defined. We generate
synthetic dataset to run our DLBAC-Env model and implement
a proof-of-concept of our model in an edge computing platform,
AWS Greengrass [2], provided by AWS cloud [1]. We also conduct
performance evaluation of our DLBAC-Env model which shows
that the level of accuracy, explainability and generalizability are
comparable to the original DLBAC model. The contributions of this
research are outlined as follows.

e We propose an environment aware DLBAC model, named as
DLBAC-Env, which can capture the environmental aspects
of the system and utilize them in the access control process.

e We generate a set of rules for different scenarios and update
the dataset with environmental metadata while including
user and resource metadata. We also evaluate the perfor-
mance of DLBAC-Env with different dataset and acceptable
results were obtained.

e We propose a reference proof-of-concept implementation of
our model in edge cloudlet using AWS Greengrass, an edge
computing service provided by Amazon Web Services.

The rest of the paper is organized as follows. Section 2 defines the
background and related work. Section 3 describes the environment
aware DLBAC model and dataset generation. Section 4 presents
the decision making process in DLBAC-Env, and Section 5 con-
tains a discussion and evaluation of the model. Section 6 presents
the details of the implementation in AWS Greengrass. Finally, we
conclude the paper with future work in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Deep Learning for Access Control

The need for robust and fault tolerant security has given rise to
an increasing need for automating and enhancing various access
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control approaches. Access control administration, policy gener-
ation, and deployment are critical tasks that, if automated, can
enable effective management of users’ access rights. The use of
deep learning techniques to enable this automation can ensure the
effectiveness of access control in a wide variety of contexts, from
extracting useful attributes that enable the generation of access
control policies to policy generation that take into consideration
the dynamic nature of various application domains. Access con-
trol management relies on identification of robust attributes and
research on using deep learning for identifying and extracting such
attributes has risen in the past few years [4]. Several works have at-
tempted to use methods such as natural language processing (NLP)
to generate synthetic natural language access control policies and
mine attributes [4, 5].

Prior studies have also attempted to generate policies from logs
[22]. The authors proposed a model that generalizes the knowledge
from the logs to yield a good set of candidates rules in a binary
vector format. The key idea is to extract insights about different
parameters that are important for obtaining a well-defined set of
rules. Upon such extraction, the set of candidate rules from the
binary vector format are transformed to the format acceptable by
Xu-Stoller [30] and performance comparisons are conducted. An
important aspect to consider while designing access control is the
mobility of today’s networks which leads to a dynamic environment
that includes devices on-the-move, such as smart watches and
specialized communication systems, such as air-ground coordinated
communications [14]. In this respect, deep learning has emerged
as an effective solution to implement access control not only on
traditional networks, but also in non-traditional networks, such as
wireless networks [24], WLANs [32], non-terrestrial networks [32],
open radio access networks [10].

Another application of deep learning in access control has been
in ensuring the security of IoT systems ([27]; [3]). [oT technologies
play a critical role in upgrading various real-world smart applica-
tions that can improve the quality of life, however, the multidisci-
plinary nature of IoT systems and the different components utilized
in their implementation present novel security issues. Thus, it is
essential to implement security measures such as access control
for securing IoT devices and their inherent vulnerabilities. As a
result, existing security solutions need be improved to successfully
safeguard the IoT environment. Also, deep learning is increasingly
becoming a powerful method to add intelligence to IoT networks
that have large-scale topology and complex radio conditions [21].

2.2 Environment Aware Access Control

The concept of environmental attributes was introduced with the
ABAC model [29, 31] and has been ever since used in various ver-
sions of ABAC. A contextual attribute access control model was
developed in [12]. The authors also discuss the dynamic nature
of these environmental variables, such as temperature or ambient
noise in the environment and how it can be captured using sensors
in the environment and then be used in generating access control
policies. Environmental attributes are a distinct type of attributes
in ABAC which represents the environmental factors affecting the
access control decisions, such as time of the day, location (user
location or object location) [13, 18, 19, 25, 28]. These attributes are
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mostly dynamic in nature but may also be static in some situation,
i.e., might have a fixed value once defined in the system. They
can also be associated with users and resources, but mostly are
independent components of the surrounding environment where
the access control is being deployed. ABAC, in its original form,
or some modified form, has also been applied in the IoT domain
by several researchers [6-9, 15, 17]. It is necessary to incorporate
environmental attributes in the access control model and decision
making process for dynamic application domains as IoT.

2.3 Deep Learning Based Access Control
(DLBAC) Model

DLBAC [23] is an automated and dynamic access control mech-
anism based on advances in deep learning technology that can
complement or potentially replace human administrators. It is dif-
ferent from classical access control approaches, such as Role Based
Access Control (RBAC) [16, 26] and ABAC in that it uses a neural
network in lieu of attribute and policy mining and engineering.
It is also a more generalizable approach as access control rules in
ABAC and RBAC focus on accurately capturing the access con-
trol state. This leads to poor generalization when making access
control decisions on users and resources with attributes that are
not explicitly seen during the mining process. A neural network is
consistently better at making decisions on unseen data provided
the training data follows the same format as the unseen data. It
replaces access control policies with a neural network that makes
access control decisions and trains this network using raw meta-
data instead of access control attributes. For example, metadata
could include logs, employee details, access timestamps, network
access profiles, etc. Examples of metadata for users are night_shift,
title, and department, and resource metadata are created_by, owner,
and type. Once the user and resource metadata are created, access
control rules are generated based on these metadata, and once the
rules are generated, authorization tuples cane created or updated
with a new operation based on the rules for a user, resource, and
operation combination.

3 ENVIRONMENT AWARE DLBAC MODEL

Here, we present an environment aware DLBAC model, known as
DLBAC-Env, for encompassing different types of environmental or
contextual information while making access control decisions in a
system. In a dynamic and complex domain, there are various envi-
ronmental aspects among which some are continuously changing
and access of users/subjects/actors on specific objects/resources is
dependent on such environmental factors. As discussed in earlier
sections, with respect to the traditional access control models, en-
vironmental attributes are already captured in ABAC model. These
environmental attributes are defined and mined by a human ad-
ministrator and are used while defining access control policies in a
system. The environmental attributes may be static, i.e., remain the
same once defined in the system, or may change across time and will
have different values based on current time of access request. Such
dynamic environmental attributes can be captured using sensors
(e.g., temperature, ambient noise) [12] or other system variables,
e.g., location, time, security level of the system.
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It is crucial to include these factors in the neural network based
DLBAC model so that it can meet the access control requirements
of highly dynamic current and futuristic application domains, such
as a fully connected smart community or smart city, smart trans-
portation where vehicles are constantly moving and operating in
dynamic environmental scenarios, smart industries - manufactur-
ing or factories, where environmental factors can determine if it is
even safe to work in that environment. For example, if there is a
gas leak detected in a smart factory, then all access to gas chamber
and pumps must be immediately and autonomously restricted. To
enable this, we propose and implement DLBAC-Env model which
incorporates such environmental information in the original DL-
BAC model.

Traditional AC models have significant limitations to address
the access control needs of dynamic application domains, such as
10T, where there are a large number of users, smart devices and
tremendous amount of data being generated from these devices,
and different types of environmental factors. Therefore, we need
a neural network based approach to automate access control and
minimize the time and resources spent on defining access control
policies based on a specific traditional AC model, access control
policy engineering, attribute engineering, policy review and up-
dates. Administrators may not be properly skilled and may need
additional training to design and implement access control policies
for new emerging application domains, such as IoT. Generally, ad-
ministrators are overburdened which leads to security holes in the
system. Thus, the goal of DLBAC-Env is to address fine-grained,
accurate, and autonomous access control for any dynamic and com-
plex application domain, such as industrial IoT, medical IoT/smart
healthcare scenario (for e.g., smart hospital, remote sensing and
patient monitoring), and mission critical application domains, as
well as other domains, university or organization, by incorporating
environmental metadata along with user metadata and resources
metadata in access control decision making process. DLBAC-Env
captures environmental information in access control decision mak-
ing process and provides this information to the neural network
which enables it to make accurate and automatic access control
decisions in a dynamic system with evolving entities and their
contexts, and large amount of sensitive data.

Figure 2 depicts the decision making process in DLBAC-Env with
new type of environmental metadata in addition to the user meta-
data and resource metadata. In the DLBAC-Env, the user metadata
and resource metadata remains the same along with four differ-
ent operations as in the original DLBAC model, but the model is
augmented with environmental metadata to represent additional
environmental information that is specific to the system and en-
tities in that system. The wide range of environmental metadata
that can be captured by various sensors or system information are
used along with user and resource metadata in generating new
access control rules or updating existing rules which in turn up-
dates permissions on operations (i.e., grant or deny operations).
The decision engine neural network gets user metadata (umeta),
resource metadata (rmeta), and environmental metadata (emeta) in
form of encoded metadata as input and gives output, i.e., operations
(op1,0p2,0p3,0r op4) that are allowed or denied based on the values
of these metadata.
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Figure 2: Decision Making in DLBAC-Env

3.1 Environmental Metadata

Now, we discuss further on environment metadata and in order
to do that, we leverage the industrial IoT use case discussed in
Section 1. Our environment aware DLBAC (DLBAC-Env) model can
accurately address access control requirements in a continuously
evolving ecosystem, such as 10T, by capturing the environmental
aspects of the application domain in which the entities reside and
operate within that domain. For example, in the smart factory use
case shown in Figure 1, there are various sensors (e.g., temperature
sensor, humidity sensor, pressure sensor, gas sensor, and weather
sensor) which can capture environmental factors inside and outside
of the factory. One of the environmental metadata (emeta) would be
threat_level which can be triggered (0 or 1) based on sensor values
and other surrounding conditions, such as weather conditions. So,
an access control rule based on the emeta can be defined as: if
emeta0 = 1 (which means that threat_level is high), due to extreme
weather condition or wind storm, then specific permissions can be
allowed or denied for certain users. Another example can be when
the temperature sensor senses extremely high values, then close out
oil pumps and restrict all access for workers. These scenarios can be
accurately captured with the help of environmental metadata, such
as wind speed, fire alert, and threat level. Let us consider, threat
level is an environmental metadata, emeta0, with values 1 and 0 as
possible values, so if emeta0 = 0, it signifies the absence of any risk
or normal levels of operations, and if emeta0= 1, then risk/threat
level is high. Now, access control rule can be defined as if emeta0 =
1, then deny access to the boiler room, and any oil pumps or tanks.

To enable fine-grained access control, it is essential to capture
the environmental information, especially in a large-scale, dynamic
and rapidly evolving domain, such as IoT ecosystem. There are
multiple contexts within IoT that also need to be considered while
making access control decisions. There are various IoT application
domains, e.g., smart health, smart home, vehicular IoT, and they
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have different types of environments that need to be considered
to provide fine-grained and robust access control within these do-
mains. For example, in a smart health scenario, when the details for
a new doctor Bob are entered into the hospital system, his joining
date could be user metadata and the location of his wearable IoT de-
vice would be environmental metadata. So, if there is an emergency
situation and Bob is the only doctor on call at that specific time and
location of wearable device shows them in hospital, then allow Bob
to access patient’s health records and take necessary actions. Simi-
lar to user and resource metadata, environmental metadata would
be immediately available to DLBAC-Env model once the system
is implemented and based on these environmental metadata, we
can define specific access control rules based on all three types of
metadata values and determine specific operations are allowed or
denied.

In Figure 2, we illustrate how environmental metadata are used
to make decisions in DLBAC-Env. In addition to using the avail-
able metadata for the user and resource, the neural network in
DLBAC-Env is configured to use data on environmental metadata
while making access control decisions. A non-IoT scenario where
environmental metadata would impact access control decisions
is a university scenario. In the university scenario, there can be
two types of environment, one with normal operations, and second,
when the University is under a cybersecurity attack. In normal envi-
ronment, users (Administrative, faculty, staff) would have access on
sensitive and non sensitive data/files and servers. However, when
the university is under a cybersecurity attack, then, the access will
be modified for the users, such as only admin and essential users
will have access on sensitive files and servers. The environment
metadata will represent normal operations or under cyber attack
and access control decisions are dependent on these environmental
factors.
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3.2 Data Generation

Using a similar approach adopted by Nobi et al, we developed a rule
based dataset using the additional environmental metadata needed
for different application domains. We adopt Nobi et al’s datasets
used in the DLBAC paper and update it with environmental meta-
data, emetal, emetaZ, ... and then use these environmental metadata
attributes to write new access control rules for the dataset in any
domain. The rules are generated based on metadata for users, re-
sources, environmental, and thereafter the dataset is updated either
by creating new tuples and updating existing tuples in the dataset
to ensure that all matching data points adhere to the specified rules.
An example of such a rule is - if emetal = 0, and umeta3 = 84 and
rmeta5 = 132, then deny operation op3, i.e., op3 = 0, where emetal
is the threat_level environmental metadata and op3 is denied.

The dataset rules are defined using the value of environmen-
tal metadata in a tuple format as <UA; RA; EA; OP>, where:UA
is the user attribute, RA is the resource attribute, EA is the en-
vironmental attribute, and OP is the operation. The rule based
syntax of the DLBAC-Env dataset contain a set of authorization
tuples in the form of: < wuid|rid|eid|m™ : vy, m*2 : vy, .., m% :
oilm™ o, m™ oy, ., m'T v m® o, m® v, mo | <
opl,op2,0p3,0p4 >>. The uid, rid, eid in the tuple indicates the
unique id of a user, a resource and environment. The next part gives
the metadata values of all i metadata of a user and m“! indicates
the first user metadata name (e.g., umeta0) whereas its value is
indicated by v1. The next part presents the metadata values of all
J metadata of a resource, and first resource metadata name (e.g.,
rmeta0) and its value are represented by m’! and v; respectively.
The subsequent part presents the metadata values of all k meta-
data of a environmental attribute, and first environmental metadata
name (e.g., emeta0) and its values are represented by m®! and vy
respectively. The last part is a binary sequence with a ‘0’ meaning
‘deny’ and a ‘1’ meaning ‘grant’ for the particular operation.

For example, (3744 | 3889318473143 10548 43|43 48 122 31 33
105486/00/(101 1)) is a sample authorization tuple in our dataset
where 3784, 3889 are the user and resource unique number. The
next set of eight numbers indicate the metadata values of a user,
the following eight numbers represent resource’s metadata values,
thereafter the following two numbers represent the environment’s
metadata values, and the last four binary digits denote that the user
has op1, op3, op4 access to the resource.

These environmental metadata attributes depend on specific
application domain and scenario that is being considered while
designing access control system. The environmental information
can be extracted or captured accordingly from the environment
and/or system. For instance, environmental metadata attributes for
medical 10T or smart health will be different than environmental
metadata attributes for a smart connected IIoT use case. The en-
vironmental conditions can also be captured using sensors in the
environment and the captured information can be directly provided
to the deep learning model in the form of environmental metadata.
An example of a environmental metadata for a smart oil factory is
threat_level with possible values as high and low which indicates
if the threat_level is high than certain operations can be restricted
or certain operations can be enabled. For instance, if there is a
malfunction in the factory, then the threat_level will be high, so it

86

Pankaj Chhetri et al.

will lockdown the critical areas, such as pump site and boiler room,
and any operation that tries to interact with the oil pump will be
denied, on the other hand, in the facility, all exit doors will open and
access should be allowed for all the users to get out of the facility.
Similarly, for medical IoT scenario, an environmental metadata can
be emergency_level which will be either True (1) or False (0) when
the patient is in critical condition. If there is a medical emergency or
accident, then allow read operation for on-call doctor on patient’s
health records and medical history, so that the doctor can treat the
patient and take necessary action, even allow access for surgery, if
needed.

3.3 Decision Making in DLBAC-Env

In DLBAC-Env, the Access Control Decision Engine (Decision En-
gine) component is responsible for receiving and authorizing access
requests. In DLBAC-Env, we update the Decision Engine (DE), as
shown in Figure 2, to take four inputs (user, resource, environ-
ment and operation). The DE obtains the corresponding binary
representation of these inputs by encoding the user, resource and
environment metadata that it retrieves from the internal databases.
The neural network (ResNet) then receives this encoded input and
predicts the access authorization for a matching request. Conse-
quently, access data for each operation is output by the network.
Finally, the requested access and the network’s output are used
by DE to determine the actual access authorization. For example,
in Figure 2, Alice is requesting to perform op3 on deviceA. The
predicted output of the neural network for op3 is 0, which indicates
that Alice does not have access to deviceA. Therefore, the DE denies
this request for Alice.

To illustrate the decision making in DLBAC-Env, let us consider
the following real world scenario: in a smart home, there can be an
environment metadata regarding risk level that represents the secu-
rity risk to the smart home devices. In this scenario, when the home
owner is not a technical expert and/or an elderly user, then the
network devices (e.g., router) and IoT devices (smart thermostats,
IP cameras) are likely to have default password and configurations.
Therefore, these devices are operating in a high security risk envi-
ronment and only the home owner must be allowed any access on
these devices until the risk level is normal. Therefore, if the envi-
ronmental metadata. i.e., risk level is high (emetal = 1) in the smart
home, then allow all access to the home owner and restrict access
to all the other users (e.g., guests, visitors, or even family members).
The home owner then may request the technicians (for example,
Bestbuy technician) to update the default password and configura-
tions, and once it is done, the risk level will become normal (emetal
= 0), thus allowing access to other users.

In DLBAC-Env, in addition to user and device attributes the
model also considers the environment attributes (environmental
metadata) while making access control decisions. The inclusion
of the additional environment metadata enables DLBAC-Env to
consider the dynamic changes in access control environments. Also,
since a neural network forms the core of the DLBAC model, one of
its main challenges is elucidating the reasoning and mechanisms
behind the DLBAC’s decisions. In other words, explainability is a
core challenge for the model. In this regard, by incorporating the
environment metadata, the DLBAC-Env model attempts to provide
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Figure 3: Performance Evaluation for DLBAC-Env

justification for the decisions made on different authorization re-
quests with reference to the environment metadata. For example,
in Figure 2, Alice wants op3 access to deviceA. This request is sent
to the DE and based on the neural network’s output, the request is
denied. Considering the smart factory use case, we have an access
control rule: if threat level is high (emeta2=1) due to flood warn-
ing, then only the site supervisor can access the oil pump. Thus,
Alice’s, who is the manager, cannot do any operation on oil pump
when there is a critical environmental threat. By incorporating the
environment metadata, DLBAC-Env can take different environmen-
tal conditions or contextual information into consideration while
making access control decisions.

4 EVALUATION AND RESULTS

We generated 5 synthetic datasets as per the process described
in Section 3.2. We then evaluate the performance of the DLBAC-
Env model using these datasets. Each dataset can be considered
as an organization with its own set of distinct user, resource and
environmental attributes. The datasets were divided into training
(80 percent) and validation (20 percent) sets. Since the validation
dataset is completely unknown during training, DLBAC-Env gen-
eralization should be accurately measured with such evaluation
experiments.

For the experiment and evaluation, we implement DLBAC-Env
model on the different synthetic datasets generated using the envi-
ronment metadata rules. To conduct a comprehensive evaluation of
DLBAC-Env, we calculate different performance metrics such as the
F1 score, Precision, True Positive Rate (TPR), and False Positive Rate
(FPR) obtained for each dataset. We take into account the accepted
definitions of these performance metrics [11] [20]. In this regard, a
high F1 score is associated with better generalization of the model.
With respect to users, resources, and environment metadata that
are not directly visible in the training process, the model is able to
make more accurate decisions about access control. Additionally,
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higher TPR and Precision scores show how precisely and effectively
the model can grant or deny access. Conversely, a lower FPR score
signifies that the model is less likely to grant access to requests that
should be denied based on the ground truth access control policy.

The DLBAC-Env model achieves consistently high performance
in all the datasets. In this regard, Figure 3 illustrates the overall
performance of DLBAC-Env on the different synthetic datasets
with respect to F1 score, FPR, TPR, and Precision. Overall, the
DLBAC-Env model achieved in general a high performance and
the results demonstrate the effectiveness of using DLBAC-Env as
an access control system in which can enable more accurate access
control decision making, given the various different environmental
considerations.

5 A REFERENCE IMPLEMENTATION IN EDGE
CLOUDLET USING AWS GREENGRASS

In this section, we provide a proof-of-concept implementation of
our DLBAC-Env model. The purpose of this is to validate the ap-
plicability of this model in more realistic IoT use case. Initially, for
implementing the DLBAC-Env model it was trained using a local
machine with an 80/20 training/testing split. The model resulted
with an accuracy of 95.90 percent, 97.11 percent precision, 95.51 F1
score and 93.96 percent recall.

However, we propose an edge computing architecture for de-
ploying our DLBAC-Env model in real-world to reduce latency
and faster response time. Implementing DLBAC-Env at the edge
also assists in enhancing model security and data privacy by pro-
viding local model computation. This is essential for IoT domains
since the response time is crucial for making critical decisions in
real-time. For example, in autonomous self driving cars, access
control decision making needs to be done in real-time, rather than
waiting for round-trip time for device to cloud and cloud to device
communications.
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Figure 4: AWS Greengrass Reference Implementation

To achieve this, the DLBAC-Env pre-trained model converted
to a tensorflow-lite model and was placed into an edge device as
shown in Figure 4. According to this proposed architecture, the IoT
devices are communicating with their shadows (virtual devices)
in the Greengrass core where our pre-trained model will also be
running on the GreenGrass Core. This core will then evaluate our
DLBAC-Env model reducing latency, increasing response time, and
can enable the IoT devices to have their requests granted or denied
as needed.

The Amazon Web Services (AWS) IoT GreenGrass (GG) service
is running on a dedicated Raspberry Pi 2 with a 900 MHz quad-core
ARM Cortex-A7 CPU, 1 GB of RAM, and 32GB microSD card. The
operating system is Raspbian 11 Bullseye, connected to a 1 Gbps
network. The AWS Lambda is the service that runs inside of the GG
Core orchestrating our code in tandem with a MQTT server that
communicates with the IoT devices. Our model runs in a long-lived
(pinned), uncontainerized environment, meaning that the code and
deep learning model is preloaded and waiting for data input to
begin processing data with the full resources of the Raspberry Pi to
compute. This GG Lambda is running locally on the Raspberry Pi
which is on same network as the devices and not in the cloud.

In our experiment, we ran 2117 trials in rapid succession by
submitting one set of data parameters as input: "3434 3410 32 84
32 23 56 109 15 39 32 84 65 40 56 109 3 25 0 1". Once the input
was provided, a clock was started, the model with said input was
evaluated and results were returned. An example of the returning
results are: "0 0 1 0". Once the output of the model was calculated,
the timer was stopped and across the 2117 trials, it took on average
1.82 ms to run each model, with a minimum of 0.978 ms and a
maximum of 3.18 ms with a standard deviation of 0.342 ms. The
tensorflow-lite model takes approximately 48 ms to load, and is
loaded prior to any inputs into the model.

Overall, our experiments demonstrate that it is feasible and ap-
plicable to run a pre-trained DLBAC-Env model in an edge cloudlet
for an IoT use case scenario. The performance evaluation results
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are also promising and can be further improved with larger dataset
and a more complete use case scenario with several IoT devices,
users, and other entities where access requests are being granted
or denied based on DLBAC-Env model.

6 CONCLUSION AND FUTURE WORK

There has been significant progress in both domains of deep learn-
ing and access control in recent years. We developed a environment
aware DLBAC model, known as DLBAC-Env model. We introduced
environmental metadata into the DLBAC model and tested it on 5
synthetic datasets which were generated using rules based on the
environmental metadata along with user and resources metadata.
We believe that with a change in environment, the DLBAC-Env
model can be applied to different contexts in any domain, a uni-
versity scenario, or a more dynamic scenario as IoT and cloud
computing, based on different types of environmental metadata
identified for each domain. Moreover, the DLBAC-Env model with
environment metadata can make dynamic and autonomous access
control decisions as it can adapt to meet any specific context in
any system since User, Resource, Environment, Operation (UREO)
format remains consistent across the different application domains
and relevant contexts or environments. In the future work, we plan
to create larger datasets and to run them for enhancing our model.
We will test the DLBAC-Env model with new dataset including
different environments for different use cases. We also plan to work
towards enhancing security of the DLBAC-Env model and protect
against adversarial attacks, such as model poisoning attacks from
malicious entities in the system.
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