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Abstract—The Internet of Things (IoT) has been widely
integrated in people’s everyday lives. As an infrastructure of
connected heterogeneous devices, IoT has not yet achieved the
seamless integration of device-to-device collaboration which is
necessary for real-life home automation. Smart home IoT devices
expect to exchange their collected data or status in certain
circumstances, in spite of their heterogeneity, viz. working with
different communication protocols, IoT platforms, middleware,
data and semantics. Deploying appropriate access control models
and mechanisms is of utmost importance as any unauthorized
access to data could have a cascading violation of privacy,
safety and security of users. In this work, we propose a novel
device-to-device access control paradigm in the smart home
IoT. Our approach relies on message passing as the paradigm
for device-to-device interactions. We further introduce actions
and scenarios reflecting the chain of events in the smart home
context, which facilitates scenario-driven attribute-based access
control. Each scenario is triggered by triggering events, based
on previously set administrative definitions. We define totally
ordered sets of triggering events using priorities to enable conflict
resolution for devices which may run into conflicting commands
delivered though messages in different ongoing scenarios. The
viability of the proposed approach is substantiated via a formal
model and an enforcement architecture, backed up by a proof-
of-concept implementation which affirms a trade-off between
required authorization and efficacy. Potential future challenges
are explored in the context of smart home IoT platforms.

Index Terms—device-to-device access control, Attribute-Based
Access Control, message passing, scenario-driven access control,
smart home IoT

I. INTRODUCTION

Smart IoT environment in which device-to-device (hereafter
D2D) communications happen seamlessly and directly among
heterogeneous devices, is currently more of a vision than
reality. Considering home IoT devices as an ecosystem with
inter-communications provides a holistic perspective toward
home automation and brings added convenience. However, it
introduces potential risks to the safety and privacy of home
users. For instance, an attacker may compromise a device to
misuse it as a breaking point for unauthorized access to the
network to which the device is attached [1], [2]. Although
there are handful of studies on individual parts of the smart
home IoT, e.g., device authentication [3]–[5], communication
protocols [6]–[8], and home automation applications [9]–[11],
research body on security of interactions in smart home is

*First Author works at Amazon now. This work was done prior to joining
Amazon.

quite scarce. In this context, securing D2D interaction through
authorization of the flow of information among devices is
pivotal and could be mediated via access control approaches.

Although there is a research body on regulating user-to-
device (hereafter U2D) access in smart homes, no previous
work has been devised to regulate the device-to-device com-
munications through specification of an access control model.
Our main contribution is to formulate an access control model
which governs authorized flow of information between home
IoT devices using Attribute-Based Access Control (ABAC),
which is the first attempt in this context to the best of our
knowledge. An ABAC policy enables capturing the dynamics
and fluidity of the smart home environment by entailing con-
textual/environmental attributes such as time and location. It
also facilitates defining authorization rules based on attributes
of involved devices in D2D communications.

Another contribution in this paper is utilizing the message
passing paradigm for D2D access control. In its essence,
in our approach human administrators, i.e., homeowners or
parents, define a set of authorized message flows between
devices through establishing access control rules, which is
defined based on sender/receiver device attributes, as well as
contextual attributes. We consider such tasks to be adminis-
trative, which precede the regulation of D2D access control at
operational level. Thereafter, no user intervention is required
for mediation of D2D access in our approach.

Further contribution is extending our model to include
scenarios as a set of actions that may occur in the home
IoT environment. Different sets of actions in the smart home
IoT could be initiated by a trigger, i.e., an event or a set
of events in the smart home. As any D2D communication is
considered to be done via message passing, we conclude each
trigger initiates a set of message passing among devices in the
smart home IoT environment. Then actions would be coupled
with their triggering events to define scenarios. By defining
priorities between triggers, we equip our model with conflict
resolution. So, if a device is involved in conflicting ongoing
scenarios, that could be resolved without human intervention.

We acknowledge the complications of the evolving D2D
communication, i.e., different platforms, communication pro-
tocols and data models, and accordingly design a consolidated
access control approach in this context. We consider direct
communication of heterogeneous IoT devices out of scope [12]
and focus our work to serve as a gateway-enabled initiative
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in the scarcely investigated area of D2D access control. The
rest of this paper is organized as follows. Section II reviews
the related work. Proposed message-based ABAC model, the
threat model, and a smart home use case are discussed in Sec-
tion III. Our scenario-based access control proposal along with
a smart home use case is presented in Section IV. Section V
includes our enforcement architecture. The experimental setup
and results are discussed in Section VI. Section VII discusses
the properties of the proposed approach and future directions
of research. Section VIII concludes the paper.

II. RELATED WORK

We discuss related works in three categories: D2D com-
munication, message-passing in IoT environments, and access
control solutions for smart home IoT.

A. Device-to-Device Communication

Seamless interoperability among IoT devices is imperative
for ongoing evolution of the IoT ecosystem. When co-located
devices that want to interoperate use heterogeneous communi-
cation technologies it becomes a challenging issue [13], [14].
Multiple attempts including IEEE P2413 [15], OneM2M1,
BigIoT2, Agile3, SymbIoTec [16], and BIoTope [17] try to
address the fragmentation of IoT application/services by de-
signing reference architectures, technical specifications, uni-
fied web APIs or providing abstractions or standard libraries.
Resource sharing and discovery for rapid cross-platform appli-
cations is another area of investigation [18]. In another effort,
3rd-generation partnership project (3GPP)4 tries to provide
cellular IoT, and is utilized in some research works [19], [20].

Similarly, semantic models based on OSGi framework5 seek
network-level interoperability in home environments [21]–
[23]. Some efforts rely on social network to build a de-
vice/standard agnostic platform for heterogeneous IoT con-
nection [24]–[26]. Despite many ongoing efforts there is no
de-facto standard and there will be none in foreseeable fu-
ture [27]. INTERIoT [28] is another approach which is aimed
not for providing a reference nor a standard model, rather
its goal is seamless cooperation/integration of heterogeneous
IoT platforms based on a layered approach. Heterogeneity in
all levels of IoT technology, including device, networking,
middleware, application and data/semantics of IoT scenarios,
makes heterogeneous IoT devices communications cumber-
some. Some enabling technologies and their challenges are
discussed in [29]. Interestingly, access control modeling is left
out of consideration in all these efforts.

B. Access Control in Smart Home IoT

Unauthorized access to the information flow in any IoT
environment may impose critical safety and privacy issues
to IoT users [30]–[35]. As a popular IoT application, smart

1https://www.onem2m.org/
2https://cordis.europa.eu/project/id/688038
3http://agile-iot.eu/about/
4https://www.3gpp.org/news-events/1906-c iot
5http://docs.osgi.org/download/r4v42/r4.core.pdf

home IoT demands for specific access control models tai-
lored for its especial requirements [36]–[40]. Proposed access
control models for smart home IoT, surprisingly, are not
many. Some researchers rely on Role-Based Access Control
(RBAC) [41], as the easiest for home users to adopt [42]
and manage [38], [43]. Capability-Based Access Control (Cap-
BAC) [44] and Attribute-Based Access Control (ABAC) [45]–
[47] are also utilized to propose authorization solutions for
resource-constrained IoT deployments. Utilizing blockchain
for smart home access control is widely investigated, yet
without proposing a formal access control model [48]–[52].

Bezawada et al. [53] is one of the few works which
provided some use cases along with their NIST NGAC6

enforcement architecture considering D2D communications,
however, no general access control model/policy is defined.
Ruledger [54] is a ledger-based framework which considers
D2D interactions, but the goal is to ensure rule integrity
in trigger-action IoT platforms, not access control. Some
research works considered heterogeneity of IoT devices, even
so their focus is on U2D interactions over heterogeneous IoT
platforms [55]. A capability-based access delegation approach
for D2D interaction has been proposed in [56]. However, it
contains no D2D access control model.

C. Message-Based Communication in IoT Environments

Some proposals in IoT environment utilize messages for
control and communication [24], authentication [5], discov-
ery and configuration of new IoT devices [57], and rout-
ing [58]. There are also some research works on securing
communications using access control models [59]. Alshehri
and Sandhu [60] identified the need for controlling data and
communication in IoT environments. A general conceptual
model for attribute-based communication control has also been
developed [61]. Our proposal is the first access control model
based on the message passing paradigm for authorization of
device-to-device communications.

III. MESSAGE-BASED D2D ABAC AUTHORIZATION
MODEL

In order to design an appropriate access control frame-
work for any IoT environment capturing the context which
thereby incorporates the dynamicity of the IoT ecosystem is
required [31]. The risk of insecurity due to unauthorized access
varies by the context in which the IoT device operates [1]. The
context of an entity could be interpreted as any information to
characterize its situation [62]. For an IoT device, the context
could include its location, battery status or owner. There are
many access control proposals in IoT environments which
design or create the IoT authorization policies while capturing
the context relying on semantic web technologies [45], RBAC
extensions [63], ABAC [64], OrBAC [65] or combination of
different access control paradigms [66].

6https://www.nist.gov/topics/identity-access-management/policy-machine-
and-next-generation-access-control
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Fig. 1. Device-to-Device ABAC Model

In this paper, we capture the IoT device context via the
contents of communicated messages in device-to-device in-
teractions. In our approach, a message is a distinct structured
entity being communicated between two IoT devices. Message
attributes are derived from its content. The contents of a
message are structured in a (key,value) format and reflect the
communication context, including the purpose of communica-
tion which is reflected in the message classification followed
by its corresponding attributes in the message. Unique to our
approach is a message passing paradigm for IoT device-to-
device access control. No two IoT devices would be able to
communicate with each other, unless there is a corresponding
authorization rule defining their possible type of commu-
nication. In other words, the set of authorized device-to-
device communications is defined through establishing access
control rules based on attributes of environment, sender and
receiver devices, and the transmitted message. Notably, for
the first time our model presents the IoT device-to-device
communication to be without human intervention.

A. Conceptual Model

Our conceptual ABAC model is depicted in Fig. 1. There
are two IoT device endpoints in each communication, sub-
ject to authorization, denoted as sender device and receiver
device. Each of these two communicating endpoints has its
own assigned attributes, such as ID, type, location, etc. The
attributes of sender/receiver devices are represented as Sender-
Att/ReceiverAtt respectively. Moreover, for each endpoint de-
vice there is a set of available functionalities, defined by its
manufacturer, and represented as SenderOP/ReceiverOP as
depicted in Fig. 1. Message is introduced in our model as
a new element of D2D access control. Message attributes
are extracted from its content and present the context of
communication, i.e., the attributes of the environment (smart
home) in which messages are transmitted. Message attributes
are represented as MessageAtt in Fig. 1. As messages are
transitory elements of the system, which do not exist until
being sent/received by corresponding devices, we depict the
message entity in a dotted circle in Fig. 1.

To be in accord with the highly dynamic nature of smart
home IoT, we consider environment state as an entity in our
model, represented as ES and utilize its associated attributes,
a.k.a. ESAtt for access control decisions. Examples of ESAtt
include daylight, time of the day, weather conditions, etc.

Authorization function is defined based on different entities’
attributes as depicted in Fig. 1. When one IoT device requests
to communicate with another IoT device, the authorization
function, which has been defined by CheckAccess predicate in
our formal representation, allows or denies the access request.

B. Formal Model

Our model’s formalization is presented in Table I. The basic
components of the model are discussed below.
Core Components. Include the set of IoT devices (D),
and their available operations (OP) which are vendor-defined
through Device operation assignment (DOA) relation. The
environment state (ES) is the set of environment attributes
representing. D, ES and M (set of messages) are considered
as entities (Ent) in our model.
Attribute Functions. We consider each entity’s attribute value
type, represented as AttValueType to be either atomic, i.e. it
would have one of the values of its range at each moment,
or a set, which could be assigned to a subset from its range.
Moreover, each device attribute is either static, i.e. its value
is fixed and statically assigned by its owner/manufacturer,
or dynamic, when its value assignment could change as the
side effect of communications with other devices or the
operations done by the device itself. The assignment type for
each attribute is represented as AttAssignType relation. EAA
and DAA denote the environment/device attribute assignment
relations which associate attributes to the environment state
and device entities respectively.
Message and Message Functions. M is a set of messages.
Each message is a set of n attributes in the form of (key,value)
pairs, communicated between two devices. Multi-messaging
and message broadcasts are out of scope. As messages are
transient entities, its sender’s ID and receiver’s ID are not
contained in the template of the message definition. The
message type is defined as a mandatory first attribute of every
message, which determines the rest of required attributes to
be included in the message. Every message belongs to one of
the classifications indicated in typeSet, restricted to ”query”,
”command”, and ”info”. Message type is reflected in the first
pair of its attribute represented as (”type”, value1 ) in which
value1 could be one of the predefined types in typeSet.

A message of type ”query”, inquires into the value of
attributes of the receiver, for instance the outdoor camera
may send a query message to the door lock to know its
”locked” attribute value. This message might be frequently
communicated, to monitor any changes in the attribute’s value.
The frequency of communication depends on the device, its
state changes, and the commands issued. A message with type
”command” orders the receiver device to perform an operation
towards its environment, e.g., a security camera may command
the door lock to be locked. An ”info” message informs the
receiver about the values of some of the attributes of the
sender. Any message of ”query” or ”command” requires
receiving back a message of type ”info” in response, which
provides the requested attribute value or acknowledges the
command’s fulfillment. An ”info” message needs no response.
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Fig. 2. Smart Home Use Case for Device-to-Device Communication

Check Access Predicate. This function would be evaluated
for each message communication to TRUE or FALSE which
respectively indicates allowance or denial of specified com-
munication in the message, from sender to receiver. In order
to authorize a message communication between a sender
device and a receiver device, two functions would be checked
by CheckAccess function. CheckAtt checks the feasibility of
the message which is intended to be communicated, that is
determined based on message type. If a message is of type
”query”, the requested attributes by sender must be a subset of
attributes defined for the receiver device through DAA relation.
Similarly, for the ”info” messages, the communicated set of
attributes has be a subset of sender device’s attributes, defined
via DAA.

For messages of type ”command”, the operation which
senders ask the receiver to do must be a functionality which
is available to the receiver and defined through DOA by its
vendor/manufacturer. For instance, if a sender device asks a
receiver’s device to do an operation which is not defined for
the receiver, this function returns ”false”.

C. Smart Home Use Case

This use case represents how the components of our model
should be configured to enforce D2D access control in a
smart home IoT environment without any need for human
intervention. Consider a single owner (say Alice) home, which
comprises a smart door lock, two indoor smart security cam-
eras and a smart outdoor camera. We assume all indoor and
outdoor cameras are equipped with presence sensors, so the
outdoor camera can detect Alice’s arrival/departure and indoor
security cameras could detect whether anybody is home.

Fig. 2 represents our use case in which the messages are
shown without sender and receiver fields for the sake of
simplicity. The outdoor camera takes the initiative when it
detects Alice is leaving. It then checks the occupied attribute
of security cameras via sending query messages. If the house
indicated to be vacant (occupied returned as FALSE by all
security cameras), then outdoor camera sends a command
message to all cameras to startRecording, and a command
message to the door lock to be locked. As soon as Alice
is detected to be back by the outdoor camera, it sends an
info message to involved devices, so the recording would be
stopped, and the door unlocked. Our proposed access control

TABLE I
MESSAGE-BASED ABAC MODEL FORMALIZATION

Core Components
−D is a set of smart home IoT devices deployed by homeowner.
−OP is a set of operations available on different devices in the system
(manufacturer specified).
−ES = {current} is the singleton set, representing the environment
state at the current time instant.
−Ent = D ∪ES ∪M is the set of entities in the system, where the set
of messages M is defined below.
−DOA : D → 2OP is a one to many relation which associates a device
to its available operations as specified by the device manufacturer.

Attribute Functions
−DAA,EAA are respectively sets of attribute functions which associate
a device or the current environment state with attribute values.
−attValueType : DAA ∪ EAA → {atomic, set}
–∀att ∈ DAA ∪ EAA, Range(att), is the attribute range, a finite set
of atomic values.
−Each att ∈ DAA∪EAA maps a device/environment to a single atomic
value or to a finite set of values, as follows:
−att : DAA ∪ EAA →{
Range(att) if attValueType(att) = atomic

2Range(att) if attValueType(att) = set

−attAssignType : DAA ∪ EAA →{
static set/changed via administrative actions
dynamic set/changed automatically by deployed sensors in home

Message and Message Functions
−M = {m} is the set of all messages in the system.
−m = {(att1 , value1 ), (att2 , value2 ), ..., (attn , valuen )}, represents
any single message in the system with n different attributes, each of which
is indicated as a (key, value) pair.
−typeSet = {”query”, ”command”, ”info”} is a mandatory first at-
tribute in every message which indicates its type and thereby the rest of
message attributes.
−For each m ∈ M , we assume the first attribute determines the type of
the message: att1 ∈ typeSet
−typeSetAtt : M → 2DAA ∪ 2DOA, is a function which indicates the
set of attribute keys required to be communicated based on the message
type, supposed to be communicated via {att2 , ..., attn} in each message.

Check Access Predicate
−CheckAccess is evaluated when a sender device (s) tries to send a
message (m) to a receiver device (r) in context of current environment
state (current) and is evaluated based on following formula:
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧
Authorization(s : D ,m : M , r : D , current : ES)
−CheckAtt = True ⇐⇒ typeSetAtt(m) =
⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−Authorization(s : D ,m : M , r : D , current : ES) is a logical
proposition which could be evaluated to either True or False and is
created using following policy rules.
−p ≡ (p) | ¬p | p ∧ p | p ∨ p | ∃x ∈ set .p | ∀x ∈ set .p | set ∆ set |
atomic ∈ set
−∆ ≡⊂|⊆|̸⊆| ∩ | ∪

model could be configured as shown in Table II to implement
this use case. Notably, Check Access Predicate depicts the
propositions which are defined to authorize message commu-
nications among devices. If any device asks for any attribute
of another device, which has not been authorized via the check
access predicate, that communication would be denied.
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TABLE II
MESSAGE-BASED D2D USE CASE SCENARIO

Core Components
D = {OutdoorCamera, SecurityCamera1, SecurityCamera2, DoorLock}
OP = {Lock, Unlock, StartRecording, StopRecording, TurnOn, TurnOff}
ES = {current}
DOA = {(SecurityCamera1,{StartRecording, StopRecording}), (SecurityCamera2,{StartRecording, StopRecording}),(OutdoorCamera, {StartRecording,
StopRecording}), (DoorLock,{Lock, Unlock})}
DAA = {(SecurityCamera1,{id, type, location, recording, occupied}), (SecurityCamera2,{id, type, location, recording, occupied}), (OutdoorCamera, {id,
type, location, recording, incident}), (DoorLock, {id, type, location, locked})}
EAA = {day, time}

Attribute Functions
id(SecurityCamera1)=”sc1”, type(SecurityCamera1)= ”camera”, location(SecurityCamera1)= ”indoor”, recording(SecurityCamera1) = {”true”,”false”},
occupied(SecurityCamera1) = {”true”,”false”}
id(SecurityCamera2)=”sc2”, type(SecurityCamera1)= ”camera”, location(SecurityCamera1)= ”indoor”, recording(SecurityCamera2) = {”true”,”false”},
occupied(SecurityCamera2) = {”true”,”false”} id(OutdoorCamera) = ”oc1”,
type(SecurityCamera1)= ”camera”, location(SecurityCamera1)= ”outdoor”, recording(OutdoorCamera1) = {”true”,”false”} incident(OutdoorCamera1) =
{”coming”,”leaving”} id(DoorLock) = ”dl1”, locked(DoorLock) = {”true”, ”false”}, type(DoorLock)= ”lock”, location(SecurityCamera1)=
”mainEntrance”{

attAssignType = static, if att∈{”id”, ”type”, ”location”}
attAssignType = dynamic, otherwise

Message and Message Functions
M = {m1,m2,m3,m4,m5,m6,m7}
m1 = {(”type”, ”push”), {(”att”, ”occupied”)}}, m2 = {(”type”, ”push”), {(”att”, ”occupied”)}},
m3 = {(”type”, ”push”), {(”occupied”, ”false”)}}, m4 = {(”type”, ”push”), {(”occupied”, ”false”)}},
m5 = {(”type”, ”com”), {(”op”, ”StartRecording”)}}, m6 = {(”type”, ”com”), {(”op”, ”StartRecording”)}},
m7 = {(”type”, ”com”), {(”op”, ”Lock”)}}

Check Access Predicate
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧Authorization(s : D ,m : M , r : D , current : ES)

−CheckAtt = True ⇐⇒ typeSetAtt(m) =


⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−Authorization(s : D ,m : M , r : D , current : ES) ≡ q1 ∨ q2 ∨ q3 ∨ q4

q1 =
[(

m.att1 = ”query”
)
∧
(
typeSetAtt(m) ∈ {”recording”, ”occupied”}

)
∧(

type(s) = type(r) = ”cameras”
)
∧
(
location(s) = ”outdoor”

)
∧
(
location(r) = ”indoor”

)]
q2 =

[(
m.att1 = ”info”

)
∧
(
typeSetAtt(m) ∈ {(”recording”, ”occupied”}

)
∧(

type(s) = type(r) = ”cameras”
)
∧
(
location(s) = ”indoor”

)
∧
(
location(r) = ”outdoor”

)]
q3 =

[(
m.att1 = ”command”

)
∧
(
typeSetAtt(m) ∈ {”StartRecording”, ”StopRecording”}

)
∧(

type(s) = type(r) = ”cameras”
)
∧
(
location(s) = ”outdoor”

)
∧
(
location(r) = ”indoor”

)]
q4 =

[(
m.att1 = ”command”

)
∧
(
typeSetAtt(m) ∈ {”Lock”, ”Unlock”}

)
∧(

type(s) = ”cameras”
)
∧
(
type(r) = ”locks”

)
∧
(
location(s) = ”outdoor”

)
∧

(
location(r) = ”mainEntrance”

)]
D. Threat Model

Smart home IoT devices are adopted by owners to en-
hance their lives security and convenience. Nevertheless, these
devices’ susceptibility to cyberattacks could make them dis-
turbing security holes. Some of the possible attack scenarios,
a.k.a attack trees, in a smart home environment are discussed
in [67], [68]. Everything considered, providing security in
complex and dynamic environments such as smart homes
remains a noteworthy challenge. We adopt the ”Dolev-Yao”
(DY) threat model [69] in which communicating endpoints
cannot be considered as trusted nodes in the network. Ac-
cording to the DY model, an adversary can tamper with
the data through modification, deletion, or insertion of fake
information as the communications rely on wireless medium.
As confirming evidence of insecure communications, a 2020

IoT threat report announced 98% of all IoT traffic was not
encrypted, thus vulnerable to security threats 7.

We are making the following assumptions for the D2D
communication in the smart home in our paper:

1) As many IoT devices are not IP-enabled, using a gate-
way (GW) node in the network is inevitable [12]. We
assume the GW node in our model is trustworthy and
available, which is a common assumption [70].

2) Attacker is an outsider to the network with the goal
of obtaining illegitimate access to available functionali-
ties/operations of smart home IoT devices.

3) We do not consider adversaries to have physical access
to IoT devices.

7https://app.hushly.com/runtime/content/xVukSNKffbmoOef2
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Fig. 3. Device-to-Device Scenario-Driven ABAC Model

Our access control model provides a defense-in-depth preven-
tion/protection against any outsider attack aiming at unautho-
rized access to an IoT device’s operation or information. Our
model restricts the set of authorized message communications
such that only a subset of one IoT device attribute/operation
is accessible to another device. Suppose a well-positioned
attacker in the network eavesdrops the communications and
impersonates as a legitimate IoT device at home using the
known vulnerabilities of the device platform. Our model
blocks the attacker’s request for arbitrary information s/he may
desire to acquire from other home devices. Therefore, it would
be arduous for an attacker with no knowledge of established
policy rules, which information a device can request from
other home devices, yet that information may be of no use
to the attacker. Our model is a barrier established, a.k.a a
defense-in-depth strategy 8.

IV. SCENARIO-BASED DEVICE-TO-DEVICE ABAC
AUTHORIZATION MODEL

Access decisions in a smart home may conflict due to
numerous reasons. Our scenario-driven access control model
aims at resolving conflicts which happen because the same de-
vice received two messages including conflicting commands.

A. Conceptual Model

Conceptual representation of our model is depicted in Fig. 3.
As stated previously, a conflict may happen due to conflicting
command-type messages received by the same device, initiated
by events which we call triggering events.

Definition 1: A triggering event is a physical event through
an IoT device’s state or operation, e.g., the door is opened, or
the user is leaving home.
Each trigger initiates a set of actions, which we collectively
call an action. As we consider any action in smart home IoT
to be done via message communication, we define an action
as a set of messages communicated among different devices.

Definition 2: An action a indicates a message m being
communicated from a specific sender s to a specific receiver r

8https://csrc.nist.gov/glossary/term/defense in depth

and defined as a triplet of a = (s : D ,m : M , r : D). Action
is a set of actions predefined by the administrator/homeowner.

A trigger may initiate a set of actions in the smart home,
which we collectively call a scenario. So, each scenario
is considered as a set of actions done in the smart home
environment. A Trigger could provoke one or more scenario(s)
in the smart home, i.e. the set of actions which has to be
consequently executed in the home. We define priorities as a
binary relation among triggers which conceptually reflect the
importance of a trigger and its consequences.

Definition 3: priority is a totally ordered set relation, de-
picted as (pr,≺) between any two triggering events tri and
trj and is reflected in their (administratively) assigned priority
values. So, for any two triggers tri and trj , it is either
(tri ≺ trj) or (trj ≺ trj).

Our conceptual model is represented in Figure 3. Along
with other elements of our message-based model, we add
extra component Trigger, as in Definition 1. Each trigger
has attributes shown as TriggerAtt, including its administra-
tively assigned priority, the set of device attributes/operations
defining that trigger, etc. Scenario is also a new component
including a set of actions along with its other attributes, shown
as ScenarioAtt, including its priority, its trigger, and its active
status. There is a one-to-many relation between Scenario and
Trigger, which indicates one trigger may initiate multiple
scenarios. This relation is defined through TriggeringEvent-
Scenario Assignment relation (TeSA), as shown in Table III.

Anytime an IoT device sends a message to another IoT
device, the Check Access predicate would be evaluated. Check
Access includes three functions. CheckAtt which detects the
feasibility of communication. CheckPriority examines the
message priority and decides if the message should either
go through or be disregarded. Authorization defines the set
of authorized flow of communications based on attributes
of environment, sender and receiver device, and message
attributes. Any conflict would be resolved by authorizing the
message communication with higher priority.

B. Formal Model

Formal representation of the model is presented in Table III.
Core Components. An extra core component is triggering
event set (TE), which could be any change in the IoT device(s)’
attributes or an action which has been done by an IoT device.
The set of entities include the set of devices, environment state,
messages, triggering events and scenarios.
Attribute Functions. CurrentOP and CurrentPR indicate
the current operation a device is doing and the priority of the
command message currently in-effect, if any. conflict is a set
of conflicting functionalities available to one device. Priority
is defined as a totally ordered set which defines a strict order
between any two triggers in the system. Each trigger would
be administratively assigned with its priority, which then at
operational level is retrieved via prA function.
Messages, Scenarios and Auxiliary Functions. In this model,
A is the set of predefined actions, including a message and
its sender and receiver. Each action (a) is representing a
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TABLE III
SCENARIO-BASED D2D ACCESS CONTROL MODEL

Core Components
−D ,OP ,ES have the same definition as Message-Based Model.
−DOA,DAA,EAA remain the same as Message-Based Model.
−TE ⊂ D × {2DOA ∪ 2att(d:D)}, is a set of triggering events. att has the same definition as in Table I.
−Ent = D ∪ ES ∪M ∪ S ∪ TE is the set of entities in the system, where the set of messages M and scenarios S are defined below.

Attribute Functions
−currentOP : D × {current} → 2DOA ∪ ∅, is the operation each device is doing at the current time instant.
−currentPR : D × {current} → (pr ,≺), is the priority of the command that the device is running at the current time instant. (pr ,≺) is defined
below.
−conflict : D → 2DOA×DOA ∪ ∅, is a set of conflicting operation pairs defined for each device by the administrator, e.g. homeowner.
−conflict(d : D) = {(opi , opj ) | opi ∈ DOA(d) ∧ opj ∈ DOA(d)}.
- All other functions are as defined in Table I.
−(pr,≺) is a totally ordered set of priorities with at least two distinct elements of ⊥ and ⊤ which correspondingly represent the lowest and highest
priorities in the system.
−prA : TE → (pr ,≺) is a function which retrieves priority of the triggering events in the system, originally assigned by system
administrator/homeowner.

Messages, Scenarios and Auxiliary Functions
−A, is a set of actions in the system.
−For each action a ∈ A : a = (s : D,m : M, r : D), action is defined as a triplet indicating communication of message m from device s to device r.
−S is the set of scenarios in the system defined by system’s administrator/homeowner, which is defined below.
−TeSA : TE → 2S is a one-to-many relation which defines a (set) of scenario(s) that would be provoked by a triggering event te ∈ TE .
−For each s ∈ S : s =

(
Actions ⊆ A, trs : TE , prs : (pr ,≺), active : {”true”, ”false”}, id

)
, and prs = prA(trs).

−active(s : S) =

{
”true” while trs is in effect.
”false” As soon as trs , triggering event, reverts.

−typeSet = {”query”, ”command”, ”info”} is a mandatory attribute of every message which indicates its type and thereby the rest of message
attributes.
−For each m ∈ M , we assume the first attribute must determine the type of the message and the second attribute must determines its priority:
att1 ∈ typeSet , att2 ∈ (pr ,≺)
−typeSetAtt : M → 2DAA ∪ 2DOA, is a function which indicates the set of attribute keys required to be communicated based on the message type,
supposed to be communicated via {att3 , ..., attn} in each message.
−msgPrA : D ×M ×D → (pr,≺) is a function which is checked each time a device sd wants to create a command message m and assigns proper
priority to it, in order to be sent to device rd .

−msgPrA(s : D,m : M, r : D) =


prs if

(
m.att1 = ”command”

)
∧
(
∃s ∈ S : active(s) = ”true”

)
∧(

∃a ∈ Actions : a.s = sd ∧ a.r = rd ∧ typeSetAtt(a.m) = typeSetAtt(m)
)

⊥ otherwise

Chech Access Predicate
−CheckAccess is evaluated when a sender device (s) wants to send a message (m) to a receiver device (r) in the context of current environment state
(current) and is evaluated based on following formula:
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧ CheckPriority(s : D ,m : M , r : D , current : ES)∧
Authorization(s : D ,m : M , r : D , current : ES)

−CheckAtt = True ⇐⇒ typeSetAtt(m) =


⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−CheckPriority(s : D ,m : M , r : D , current : ES) ≡


”false” if (m.att1 = ”command”)∧[

((m.”op”, currentOP(r)) ∈ conflict(r)) ∧ (m.value2 ≺ currentPR(r)
]

”true” otherwise
−Authorization(s : D ,m : M , r : D , current : ES) is a logical proposition which could be evaluated to either True or False and is created using
following policy rules.
−p ≡ (p) | ¬p | p ∧ p | p ∨ p | ∃x ∈ set .p | ∀x ∈ set .p | set ∆ set | atomic ∈ set
−∆ ≡⊂|⊆|̸⊆| ∩ | ∪

message being communicated between two devices. S is a
set of scenarios in the system. Each scenario, s, represents a
set of actions happening via messaging among IoT devices in
the smart home. TeSA function defines a (set) of scenario(S)
which would be triggered as the result of a given triggering
event. As far as the triggering event is still effective, the
triggered scenario(s) would also be going on and considered
to be active. Priority of each scenario is the same as its trigger,
and the priority value of messages included in one scenario

would be the same as their containing scenario. Priorities are
defined as binary relations between different triggers.
Check Access Predicate. The Check Access predicate in-
cludes three parts, each of which is responsible for a portion
of access control in our extended model, and access would be
granted to communicated the desired message if and only if
all three following functions return TRUE:

1) CheckAtt(s : D ,m : M , r : D , current : ES ) is a func-
tion checking the feasibility of communication based on
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Fig. 4. Smart Home Use Case for Scenario-Driven D2D Communication

the message type and typeSetAtt in the message. It does
the same checks as described in Section III-B.

2) CheckPriority(s : D ,m : M , r : D , current : ES )
is specific to the scenario-based model proposed in
this section. As messages may conflict only if they
are of type command, this function returns TRUE,
for all messages of type info or query. For command
messages, it returns FALSE when the requested operation
via command message is in conflict with the current
operation being done at the moment on the receiver
or if the message to be sent is assigned with lower
priority. Otherwise, it returns TRUE.

3) Authorization(s : D ,m : M , r : D , current : ES ) is a
logical proposition which determines the set of allowed
communications in the smart home IoT environment
between different devices.

C. Smart Home Use Case

Figure 4 represents a smart home use case for our scenario-
based model. Sender and receiver fields of messages are
implied in the figure, arrows representing the direction of
communications. This use case includes a two-story smart
home IoT containing a soil moisture meter, an outdoor camera,
a leakage detector, a sprinkler and two valves for first and
second floor water flow control. A Soil moisture meter deter-
mines when the sprinkler starts spraying water by monitoring
moisture level, and the leakage detector is responsible to cut
off the water when any abnormal flow is discovered. We chose
to exemplify scenario-based model by a different use case in
which different devices are messaging each other. While in
use case is Section III outdoor camera was responsible for all
communications. Notably, none of the proposed models, not
message-based, nor scenario based, need a central device to
be responsible for all message communications.

Here, there are two scenarios going on. Scenario s1 is
initiated when the Soil Moisture Meter senses the soil moisture
level to be lower than a specified threshold, so it sends a
query message to the Security Camera in the backyard to
inquire the outdoor’s vacancy status, determined by occupied
attribute value. If the backyard is vacant (occupied = false),
then Soil Moisture Meter sends a command message with
normal priority to turn on the Sprinkler. After a while when the
sprinker is still spraying water, scenario s2 is triggered when

the Leakage Detector detects a leak, so it sends a info message
to the Main Water Meter. Thereafter, Main Water Meter sends
a command message with high priority to first/second-floor
Valves, and Sprinkler to shut the flow off. Here the message to
shut off the Sprinkler would go through because the currenPR
is normal and the message from the Main Water Meter
has higher priority. So, Sprinkler faces a conflict as it has
received two conflicting commands from Soil Main Moisture
Meter and Leakage Detector. In our model, Sprinkler executes
whatever operation included in the command message with
higher priority, which is shut off from Leakage Detector. Our
proposed access control could be configured as presented in
Table IV to achieve following goals:

1) Authorize Soil Moisture Meter and Leakage detector to
initiate appropriate set of actions by activating above-
mentioned scenarios.

2) Enabling any receiver of conflicting command messages
to resolve the conflict relying on priorities.

The smart home IoT devices, their attributes and available
operations, and environment attribute and state are represented
as core components of our model. The set of attributes for
each device are represented under attribute functions. Five
different priorities have been defined as a binary relation
between triggers. There are two different scenarios, s1 and
s2 , each of which is a set of actions. The order of commu-
nicated messages in each scenario is indicated by their sub-
script number. Based on assigned priorities to triggers, which
are (LeakageDetector , (leak , true)) with high priority and
(SoilMoistureMeter , droughtStatus = ”dry”)) with normal
priority, indicated by prA function. The two scenarios of s1
and s2 have the same priorities as their triggering events and
are comparable as s1 ≺ s2. Check Access predicates are pre-
sented in Table IV, which include policy rules for CheckAtt,
CheckPriority and Authorization of message communication
between IoT device pairs.

V. ENFORCEMENT ARCHITECTURE

Direct D2D communication is a long haul [12]. We present a
decentralized enforcement architecture for our model, in which
different IoT devices delegate the authorization decisions to
an external entity. Even if heterogeneous IoT devices could
directly intercommunicate, reliance upon an external entity
to embrace decentralized access control is still desirable, as
restricted IoT devices would no longer need to maintain/apply
authorization information/rules themselves [71]. Our enforce-
ment architecture is depicted in Fig. 5, which is designed based
on AWS IoT because of its simplicity, security, flexibility,
and being agnostic to device type and OS 9. However, our
enforcement architecture is not peculiar to AWS and could be
designed independently of any cloud provider.

We deployed our architecture utilizing AWS Greengrass
(GG) SDK 10, which lets users run a local event-driven com-
putation unit (Lambda function 11), messaging, data caching,

9https://aws.amazon.com/iot-device-management/
10https://docs.aws.amazon.com/greengrass/
11https://aws.amazon.com/lambda
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TABLE IV
SCENARIO-BASED D2D MODEL: SMART HOME USE CASE

Core Components
D = {LeakageDetector, MainWaterMeter, SoilMoistureMeter, SecurityCamera, Sprinkler, FirstFloorValve, SecondFloorValve}
OP = {StartRecording, StopRecording, StartMeasure, StopMeasure, StartMonitor, StopMonitor, TurnOn, ShutOff}
ES = {current}
DOA = {(SecurityCamera,{StartRecording, StopRecording}), (LeakageDetector,{StartMonitor, StopMonitor}), (MainWaterMeter, {StartMeasure,
StopMeasure}), (SoilMoistureMeter, {StartMonitor, StopMonitor}), (Sprinkler, {TurnOn, ShutOff}), (FirstFloorValve, {TurnOn, ShutOff}),
(SecondFloorValve, {TurnOn, ShutOff})}
DAA = {(SecurityCamera,{id, type, location, recording, occupied}), (LeakageDetector,{id, type, leak}), (MainWaterMeter, {id, type, Measuring}),
(SoilMoistureMeter, {id, type, droughtStatus}), (FirstFloorValve, {id, type, location, flowStatus}), (SecondFloorValve, {id, type, location, flowStatus}),
(Sprinkler, {id, type, location, flowStatus})}
EAA = {day, time}
TE = {(LeakageDetector,(leak,”true”)), (SoilMoistureMeter,(droughtStatus,”dry”))}
Ent = D ∪ ES ∪M ∪ S ∪ TE

Attribute Functions
(pr,≺) = (⊥ ≺ low ≺ normal ≺ high ≺ ⊤)
id(SecurityCamera) = ”sc”, type(SecurityCamera) = ”cameras”, location(SecurityCamera) = ”outdoor”, recording(SecurityCamera) = {”true”,”false”},
occupied(SecurityCamera) = {”true”,”false”}, conflict(SecurityCamera)={(StartRecording,StopRecording)}
id(LeakageDetector) = ”ld”, type(LeakageDetector)= ”detectors”, subtype(LeakageDetector)=”leak”, leak(LeakageDetector) = {”true”,”false”},
conflict(LeakageDetector)={(StartMonitor, StopMonitor)}
id(MainWaterMeter) = ”wm”, type(MainWaterMeter)= ”valves”, subtype(MainWaterMeter)=”watermeter”,Measuring(MainWaterMeter) = {”true”,
”false”}, type(MainWaterMeter)= ”valves”, conflict(MainWaterMeter)={(StartMeasure, StopMeasure)}
id(SoilMoistureMeter) = ”sm”, type(SoilMoistureMeter)= ”detectors”, droughtStatus(SoilMoistureMeter) = {”dry”,”moist”},
conflict(SoilMostureMeter)={(StartMonitor, StopMonitor)}
id(FirstFloorValve) = ”v1”, type(FirstFloorValve)=”valves”, location(FirstFloorValve)=”indoor”, flowStatus(FirstFloorValve) = {”flowing”, ”halted”},
conflict(FirstFloorValve)={(TurnOn, ShutOff)}
id(SecondFloorValve) = ”v2”, conflict(SecondFloorValve)={(TurnOn, ShutOff)}, flowStatus(SecondFloorValve) = {”flowing”, ”halted”},
id(SecondFloorValve) = ”v1”, type(SecondFloorValve)=”valves”, location(SecondFloorValve)=”indoor”, flowStatus(SecondFloorValve) = {”flowing”,
”halted”}, conflict(SecondFloorValve)={(TurnOn, ShutOff)}
id(Sprinkler) = ”s”, type(Sprinkler)=”valves”, location(Sprinkler)=”outdoor”, flowStatus(Sprinkler) = {”flowing”, ”halted”},
conflict(Sprinkler)={(TurnOn, ShutOff)}

−attAssignType(d, att) =

{
static if att ∈ {”id”, ”type”, ”subtype”, ”location”}
dynamic otherwise

Message, Scenarios and Auxiliary Functions
−(pr,≺) = (⊥ ≺ low ≺ normal ≺ high ≺ ⊤)
−prA = {((LeakageDetector , leak = ”true”), high),
((SoilMoistureMeter , droughtStatus = ”dry”),normal)}
−A = {a1, a2, a3, a4, a5, a6, a7}
−a1 = (SoilMoistureMeter , {(”type”, ”query”), (”att”, ”occupied”)},SecurityCamera)
−a2 = (SecurityCamera, {(”type”, ”info”), (”occupied”, ”false”)},SoilMoistureMeter)
−a3 = (SoilMoistureMeter , {(”type”, ”command”), (”op”, ”TurnOn”)},SecurityCamera)
−a4 = (LeakageDetector , {(”type”, ”info”), (”leak”, ”true”)},MainWaterMeter)
−a5 = (MainWaterMeter , {(”type”, ”command”), (”op”, ”ShutOff ”)},FirstFloorValve)
−a6 = (MainWaterMeter , {(”type”, ”command”), (”op”, ”ShutOff ”)},SecondFloorValve)
−a7 = (MainWaterMeter , {(”type”, ”command”), (”op”, ”ShutOff ”)},Sprinkler)
−S = {s1, s2}
−s1 = {Actions1 , prs1 , trs1 , active, id} ,Actions1 = {a1 , a2 , a3 }, trs1 = (SoilMoistureMeter , (droughtStatus, ”dry”), prs1 = ”normal”
−s2 = {Actions2 , prs2 , trs2 , active, id} ,Actions2 = {a4 , a5 , a6 , a7 }, trs2 = (LeakageDetector , (leak , ”true”), prs2 = ”high”
−id(s1 ) = s, id(s2 ) = s′

−active(s1 ) and active(s2 ) is determined based on definition in Table III, at each instant of time.
−M = {m1 ,m2 ,m3 ,m4 ,m5 ,m6 ,m7 }
m1 = ((”type”, ”query”), (”pr”,msgPrA(sender1 ,m1 , receiver1 )), {(”att”, ”occupied”)”})
m2 = ((”type”, ”info”), (”pr”,msgPrA(sender2 ,m1 , receiver2 )), {(”occupied”, ”false”))}
m3 = ((”type”, ”command”), (”pr”,msgPrA(sender3 ,m3 , receiver3 )), {(”op”, ”turnOn”))}
m4 = ((”type”, ”info”), (”pr”,msgPrA(sender4 ,m4 , receiver4 )), {(”leak”, ”true”)”})
m5 = ((”type”, ”command”), (”pr”,msgPrA(sender5,m5, receiver5)), {(”op”, ”shutOff”)”})
m6 = ((”type”, ”command”), (”pr”,msgPrA(sender6,m6, receiver6)), {(”op”, ”shutOff”)”})
m7 = ((”type”, ”command”), (”pr”,msgPrA(sender7,m7, receiver7)), {(”op”, ”shutOff”)”})

-After s1’s activation:

{
msgPrA(m1 ) = msgPrA(m2 ) = ⊥
msgPrA(m3 ) = ”normal”

-After s2’s activation:

{
msgPrA(m4 ) = ⊥
msgPrA(m5 ) = msgPrA(m6 ) = msgPrA(m7 ) = ”high”
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TABLE IV
SCENARIO-BASED D2D MODEL: SMART HOME USE CASE (CONT.)

Attribute Authorization Function
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧
CheckPriority(s : D ,m : M , r : D , current : ES)∧
Authorization(s : D ,m : M , r : D , current : ES)

−CheckAtt(s : D ,m : M , r : D , current : ES) = True ⇐⇒

typeSetAtt(m) =


⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−CheckPriority(SoilMoistureMeter ,m1 , ”sc”, {current}) ≡ ”true”
−CheckPriority(SecurityCamera,m2 , ”sm”, {current}) ≡ ”true”
−CheckPriority(SoilMoistureMeter ,m3 , ”s”, {current}) ≡ ”true”
−CheckPriority(LeakageDetector ,m4 , ”wm”, {current}) ≡ ”true”
−CheckPriority(MainWaterMeter ,m5 , ”v1”, {current}) ≡ ”true”
−CheckPriority(MainWaterMeter ,m6 , ”v2”, {current}) ≡ ”true”
−CheckPriority(MainWaterMeter ,m7 , ”s, {current}) ≡ ”true”

−Authorization(s : D ,m : M , r : D , current : ES) ≡
q1 ∨ q2 ∨ q3 ∨ q4 ∨ q5

q1 =
[(

m.att1 = ”info”
)
∧
(
typeSetAtt(m) ∈ {”leak”}

)
∧(

type(r) = ”valves”
)
∧
(
subtype(r) = ”watermeter”

)
∧(

type(s) = ”detectors”
)]

q2 =
[(

typeSetAtt(m) ∈ {”ShutOff ,TurnOn”}
)
∧
(
m.att1 =

”command”
)
∧
(
type(r) = type(s) = ”valves”

)
∧(

subtype(s)=”watermeter”
)]

q3 =
[(

m.att1 = ”query”
)
∧
(
typeSetAtt(m) ∈ {”occupied”}

)
∧(

type(s) = ”detectors”
)
∧

(
subtype(s) = ”soil”

)
∧
(
type(r) = ”cameras”

)
∧
(
location(r) = ”outdoor”

)]
q4 =

[(
m.att1 = ”info”

)
∧
(
typeSetAtt(m) ∈ {”occupied”}

)
∧(

type(s) = ”camera”
)
∧

(
location(source) = ”outdoor”

)
∧
(
type(r) = ”detectors”

)
∧
(
subtype(r) = ”soil”

)]
q5 =

[(
typeSetAtt(m) ∈ {”TurnOn,ShutOff ”}

)
∧
(
m.att1 =

”command”
)
∧
(
type(s) = ”detectors”

)
∧
(
type(r) =

”valves”
)
∧
(
subtype(s) = ”soil”

)
∧
(
location(r) = ”outdoor”

)]

and synchronization for connected devices in a secure way
without the need for computation on cloud providers. GG
communicates with locally connected devices over MQTT 12

protocol which is a lightweight machine-to-machine publish-
subscribe protocol designed for constrained devices. Using
MQTT, devices will communicate on their private topics,
device/shadow/update, to update their shadows, and trigger the
lambda function. As devices communicate their state on their
private topics, it would be stored locally, as the device shadow,
which is accessible only by themselves and the lambda func-
tion. When lambda code is triggered, it executes the code
we developed to check the policy. If permission granted,
the results will be communicated, the shadow states will be
updated, and the physical device will respond accordingly.

12http://www.ibm.com/developerworks/webservices/library/ws-
mqtt/index.html

Fig. 5. Device-to-Device Architecture

TABLE V
FULL EXPERIMENT AND DEVICE STATE UPDATE STATISTICS.

Expr. Min 10% 25% Med 75% 90% 95% 99% Max
ft 24.2 25.4 26.0 34.9 36.7 39.0 42.9 47.4 67.2
su 3.5 3.6 3.7 5.7 6.6 6.9 7.4 10.2 21.8

VI. IMPLEMENTATION

A. Experiment Setup

A proof-of-concept implementation of two smart home use
cases in Sec. III-C and IV-C are described. We use AWS
IoT GG V1, running on a dedicated virtual machine with
one virtual CPU, 2 GB of RAM and 20 GB hard drive. The
operating system of the virtual machine is Ubuntu 20.4.2 LTS
and it is connected to a 1 Gbps network. We wrote the AWS
lambda code on GG in Python 3.8, which is running in a
long-lived isolated docker environment with 64 MB RAM.
GG lambda is running locally on the same network as the
devices and not in the cloud.

B. Implementation Results

Both scenarios we implemented have a similar computa-
tional process. A device sends a message to another device
through the GG lambda function. Upon receiving the message,
lambda spins up multiple threads, and begins processing our
code. This initial process results in a few spurious results
that have particularly long processing delays shown at the
top 1% of results depicted in Table V. As a message re-
ceived by lambda, once the sender and destination devices
are authenticated, the code would proceed. In general, lambda
inquires the shadow status of the device(s) as necessary, the
priority levels of messages, then sends a series of commands to
various devices based on the policy.json. Any priority conflicts
between command messages received by the same device are
resolved based on this rule: the higher priority is dominant.
If two commands with the same priorities are conflicting, we
run the most recent one. If the scenario did not exist in the
policy, the situation is considered invalid, disregarded, and no
additional commands would be executed.
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Fig. 6. Time (ms) per Action on GG

Our implementation results show an average time for a
device to execute an action, have lambda process it, and update
the respective devices to be on average 35 milliseconds. This
complete process is indicated as ’full timer’ (ft), averaged over
500 trials and includes transmission time going to/from lambda
to the devices over a 1 Gbps network connection. A more
detailed breakdown of the analysis is included in Table V.
The average time to update a device’s state (su), e.g., a door
lock going from unlocked to locked, is 6ms. The various use
cases and actions are also timed and shown as boxplots in
Fig. 6, where the whiskers are the minimum and maximum
values collected across 500 trials for each experiment. The
box shows the 25 percentile and 75 percentile of the data,
with median as the line contained inside the box.

VII. DISCUSSION AND RESEARCH DIRECTIONS

A. Proposed Model/Architecture Properties

Our model is unparalleled as it provides specification
for mediating access in device-to-device communications for
the first time. Besides being context-aware, dynamic and
lightweight, following features are notable about our model.
Continuity of Access. Attributes of sender/receiver devices
may change at any time as a result of an operation or an
alteration in the environment, a.k.a mutability [72]. We utilized
AWS for our model enforcement, in which lambda would be
informed on any changes in participating device attributes via
subscription to corresponding topics. Any change triggers the
lambda which then re-evaluates the policy and adjusts the
access authorizations accordingly. So, the continuity is sup-
ported using lambda in AWS architecture. In order to provide
continuity as one of the model’s elements, regardless of its
enforcement method, the continuous retrieval and evaluation
of entity/environment attributes should be incorporated in the
model. Moreover, continuity of access control is concluded

when the proposed model is able to revoke the previously
granted access in case of any unintended change in attributes.
Architecture Agnostic. AWS as the enforcement architecture
augmented our framework with some desired features, how-
ever, our model is not peculiar to it.

B. Research Agenda

A factual interoperability solution for IoT environments
would be obtained when there is no need to rely on a gateway
for communication of heterogeneous IoT devices. Heterogene-
ity in different layers of IoT communications, data/information
models, communication syntax/semantics/technologies, etc.
should also be investigated [28], [57]. There are many IoT
devices which are called black box, as they provide least
visibility toward their internal state and composition. So, they
cannot be managed and accessed as traditional IT devices [1].
Building access control solutions which are tailored to specific
features of IoT devices and environments is an utmost require-
ment. Proposed access control models are better to comprise
of both user-to-device and device-to-device communications
in order to be considered a thorough solution.

VIII. CONCLUSION

In this paper we proposed a novel device-to-device access
control model specification based on attribute-based access
control (ABAC) approach. Our model relies on the message
passing paradigm for authorization of intercommunication
among IoT devices in the smart home environment. We also in-
troduced the concept of scenarios, reflecting a chain of actions
initiated by a triggering event. A total order relation among
triggersto address the probable conflicts is another contribution
of our paper. We backed up our model by proposing an
enforcement architecture which is appropriate for intermittent
connections in the smart home IoT by bringing the com-
putations to the edge. Our proof-of-concept implementation
endorses our proposed model to be efficient and appropriate.
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[22] V. Peláez et al., “Multilevel and hybrid architecture for device abstrac-
tion and context information management in smart home environments,”
in AmI. Springer, 2010.

[23] J. E. Kim et al., “Seamless integration of heterogeneous devices and
access control in smart homes and its evaluation,” Intelligent Buildings
International, 2017.

[24] EPI, “Open virtual neighbourhood network to connect IoT infrastruc-
tures and smart objects.” [Online]. Available: https://vicinity2020.eu/

[25] Y. Guan et al., “An open virtual neighbourhood network to connect IoT
infrastructures and smart objects—Vicinity: IoT enables interoperability
as a service,” in GIoTS. IEEE, 2017.

[26] A. Cimmino et al., “VICINITY: IoT semantic interoperability based on
the web of things,” in DCOSS. IEEE, 2019.

[27] J. Manyika et al., “Unlocking the potential of the internet of things,”
McKinsey Global Institute, 2015.

[28] G. Fortino et al., “Towards multi-layer interoperability of heterogeneous
IoT platforms: The INTER-IoT approach,” Integration, interconnection,
and interoperability of IoT systems, 2018.

[29] K. Shafique et al., “Internet of things for next-generation smart systems:
A review of current challenges, future trends and prospects for emerging
5G-IoT scenarios,” Access, 2020.

[30] A. Ouaddah et al., “Access control in the internet of things: Big
challenges and new opportunities,” Networks, 2017.

[31] S. Ravidas et al., “Access control in internet-of-things: A survey,”
Network and Computer Applications, 2019.

[32] E. Bertin et al., “Access control in the internet of things: A survey of
existing approaches and open research questions,” Annals of telecom-
munications, 2019.

[33] B. Cremonezi et al., “Survey on identity and access management for
internet of things,” 2020.

[34] J. Qiu et al., “A survey on access control in the age of internet of things,”
IoT, 2020.

[35] Z. N. Mohammad et al., “Access control and authorization in smart
homes: A survey,” Tsinghua Science and Technology, 2021.

[36] B. Ur et al., “The current state of access control for smart devices in
homes,” in HUPS, 2013.

[37] W. He et al., “Rethinking access control and authentication for the home
internet of things (IoT),” in USENIX, 2018.

[38] E. Zeng et al., “Understanding and improving security and privacy in
multi-user smart homes: a design exploration and in-home user study,”
in USENIX, 2019.

[39] M. Tabassum et al., “Smart home beyond the home: A case for
community-based access control,” in CHI. ACM, 2020.

[40] S. Kanchi et al., “A multi perspective access control in a smart home,”
in CODASPY. ACM, 2021.

[41] S. Ameer et al., “The egrbac model for smart home IoT,” in IRI. IEEE,
2020.

[42] A. K. Sikder et al., “Kratos: Multi-user multi-device-aware access
control system for the smart home,” in WiSec. ACM, 2020.

[43] M. Alramadhan et al., “An overview of access control mechanisms for
internet of things,” in ICCCN. IEEE, 2017.

[44] F. Bakir et al., “Caplets: Resource aware capability-based access control
for IoT,” in SEC. IEEE, 2021.

[45] S. Dutta et al., “Context sensitive access control in smart home envi-
ronments,” in BigDataSecurity, HPSC and IDS. IEEE, 2020.

[46] S. Ameer et al., “The HABAC model for smart home iot and comparison
to EGRBAC,” in Sat-CPS. ACM, 2021.

[47] ——, “An attribute-based approach toward a secured smart-home iot ac-
cess control and a comparison with a role-based approach,” Information,
2022.

[48] A. Dorri et al., “Blockchain for iot security and privacy: The case study
of a smart home,” in PerCom Workshops. IEEE, 2017.

[49] B. Mbarek et al., “Blockchain-based access control for IoT in smart
home systems,” in DEXA. Springer, 2020.

[50] A. Qashlan et al., “Security and privacy implementation in smart home:
Attributes based access control and smart contracts,” in TrustCom.
IEEE, 2020.

[51] V. Hu, “Blockchain for access control systems,” NIST, Tech. Rep., 2021.
[52] B. Tang et al., “Iot passport: A blockchain-based trust framework for

collaborative internet-of-things,” in SACMAT. ACM, 2019.
[53] B. Bezawada et al., “Securing home iot environments with attribute-

based access control,” in ABAC. ACM, 2018.
[54] J. Fan et al., “Ruledger: Ensuring execution integrity in trigger-action

iot platforms,” in INFOCOM. IEEE, 2021.
[55] S.-R. Oh et al., “An interoperable access control framework for diverse

iot platforms based on OAuth and role,” Sensors, 2019.
[56] B. Anggorojati et al., “Capability-based access control delegation model

on the federated IoT network,” in WPMC. IEEE, 2012.
[57] C. Perera et al., “Context-aware dynamic discovery and configuration

of ‘things’ in smart environments,” in Big Data and Internet of Things:
A Roadmap for Smart Environments. Springer, 2014.

[58] O. Bello et al., “Intelligent device-to-device communication in the
internet of things,” Systems, 2014.

[59] L. Cruz-Piris et al., “Access control mechanism for IoT environments
based on modelling communication procedures as resources,” Sensors,
2018.

[60] A. Alshehri et al., “Access control models for cloud-enabled IoT: A
proposed architecture and research agenda,” in CIC. IEEE, 2016.

[61] S. Bhatt et al., “ABAC-CC: Attribute-based access control and commu-
nication control for internet of things,” in SACMAT. ACM, 2020.

[62] G. D. Abowd et al., “Towards a better understanding of context and
context-awareness,” in HUC. Springer.

[63] G. Zhang et al., “An extended role based access control model for the
internet of things,” in ICINA. IEEE, 2010.

[64] P. Colombo et al., “Access control enforcement within MQTT-based
internet of things ecosystems,” in SACMAT. ACM, 2018.

[65] K. Guesmia et al., “Orbac from access control model to access usage
model,” Applied Intelligence, 2018.

[66] Y. Dong et al., “Contexts-states-aware access control for internet of
things,” in CSCWD. IEEE, 2018.

[67] D. Meyer et al., “A threat-model for building and home automation,” in
INDIN. IEEE, 2016.

[68] D. Geneiatakis et al., “Security and privacy issues for an iot based smart
home,” in MIPRO. IEEE, 2017.

[69] D. Dolev et al., “On the security of public key protocols,” Transactions
on information theory, 1983.

[70] G. S. Poh et al., “Privhome: Privacy-preserving authenticated commu-
nication in smart home environment,” TDSC, 2019.

[71] V. Beltran et al., “Overview of device access control in the IoT and its
challenges,” Communications Magazine, 2018.

[72] R. Sandhu et al., “Usage control: A vision for next generation access
control,” in MMM-ACNS. Springer, 2003.

228

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 15,2023 at 20:42:03 UTC from IEEE Xplore.  Restrictions apply. 


