
1

Hybrid Approaches (ABAC and RBAC) Toward
Secure Access Control in Smart Home IoT

Safwa Ameer, James Benson, and Ravi sandhu

AbstractÐSmart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with

multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide

range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access

control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for

IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based

access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated

that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet

IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to

develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to

develop HyBACRC and HyBACAC , respectively. We formally define these models and illustrate their features through a use case

scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT

platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC

model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to

meet smart homes’ challenges.

Index TermsÐIoT, Smart Homes, Access Control, ABAC, RBAC.

✦

1 INTRODUCTION

C
URRENTLY, the Internet of Things (IoT) is a key topic in

technology. One of the most popular domains for deploying

smart connected devices is the smart home. The smart home

consists of a network of physical objects (things) equipped with

sensors, software, and other technologies that enable it to exchange

data and information with other devices, users, and systems over

the Internet. Smart homes’ main purposes are to anticipate and

respond to the needs of the occupants, working to promote their

comfort, convenience, security, and entertainment through the

management of technology within the home and connections to

the world beyond [1]. Several real-world examples have shown

the shortcomings of current access control policy specification

and authentication for home IoT devices, as described in [2], [3],

and [4]. As illustrated in [2], the characteristics that make IoT

distinct from prior computing domains necessitate a rethinking of

access control and authentication. In the literature, several access

control models have been proposed for IoT in general, with a

few specifically designed to meet smart homes’ challenges. Most

models are based on ABAC or RBAC. RBAC has been argued

to be more suitable for IoT due to its simplicity in management

and review, whereas ABAC management and review tasks are

more complex [3, 26, 27]. Furthermore, RBAC enforcement may

also be more lightweight for constrained home smart devices.

Nevertheless, there are those who argue that ABAC models are

more scalable and dynamic due to the fact that they can capture

contextual information specific to different devices and environ-

mental conditions [5], [6], [7].

• The authors are with the Institute for Cyber Security (ICS) and its NSF

Center for Security and Privacy-Enhanced Cloud Computing (C-SPECC),

within the Department of Computer Science at the University of Texas at

San Antonio (UTSA), San Antonio, Texas .

Recently, some researchers showed that while RBAC-based

models are simpler in management and review, they are not

capable enough to capture the entire dynamic characteristics of

the IoT environment [8], [9], [10], [11], [12], [13]. On the other

hand, in ABAC-based models, it can be very complicated to

determine and limit the permissions available for each user at

assignment time. This can make it infeasible to determine risk

exposure for a given user [10], [14]. Hence, as several authors

have suggested [8], [9], [10], [11], [12], [13], [14], in order to

overcome these challenges, a hybrid model combining ABAC and

RBAC characteristics is needed.

In this paper, we introduce two hybrid models, HyBACRC and

HyBACAC , that cover different authorizations for every possible

user’s, environment’s, operation’s, and device’s static or dynamic

condition while combining the advantages of ABAC and RBAC

based models. We formally define each model and illustrate it

with a use case scenario and proof of concept implementation. In

developing these models, we started with EGRBAC (a role-based

access control model) and HABAC (an attribute-based access

control model). We then followed two different approaches: a role-

centric approach in developing HyBACRC and an attribute-centric

approach in developing HyBACAC [14]. The reason for choosing

EGRBAC and HABAC as base models is that they are both

contextual aware and fine-grained models explicitly designed to

meet smart home challenges. HyBACRC and HyBACAC maintain

the criteria for smart home IoT access control models proposed by

[15], and the new perspective of smart home IoT access control

requirements recently identified by [2]. Moreover, we conducted

a comprehensive theoretical comparison between the two models

proposed in this paper, viz. HyBACRC and HyBACAC , and the

two earlier models of EGRBAC and HABAC. The comparison is

based on criteria adapted and developed from [16].

HyBACRC and HyBACAC are proposed for the smart home

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

2

IoT environment. However, they can be adjusted and adapted for

other IoT application domains. Our ultimate goal is to have a

family of access control models ranging from relatively simple to

more sophisticated with better features and more expressiveness

power to provide policy designers with a range of models to

choose from according to the environment requirements and the

business needs.

The structure of this paper is as follows. Section 2 motivates

the paper. Section 3 provides an analysis and review of related

work. Section 4 introduces HyBACRC . It provides a formal defi-

nition for HyBACRC along with an illustrative use case scenario.

In Section 5, we introduce HyBACAC followed by a formal

definition and an illustrative use case. In Section 6, we demonstrate

our models with a proof of concept implementation. In Section 7,

we analyze and compare the two new hybrid models along with

the earlier EGRBAC and HABAC. Moreover, in Section 8, we

discuss the paper. Finally, Section 9 concludes the paper.

2 MOTIVATION

Role-based access control (RBAC) and attribute-based access

control (ABAC) models have been extensively studied in the

literature. However, as discussed earlier, in light of the fact

that, unlike RBAC, ABAC models can capture different devices

and environment contextual information, some researchers believe

they are more scalable, fine-grained, and dynamic. This would

suggest that ABAC is more suitable for IoT access control [5], [6],

[7]. Alternatively, other researchers argue that RBAC models are

more suitable for IoT due to their simplicity in management and

review, as well as their lightweight enforcement for constrained

IoT devices [8], [17], [18]. Hence, as expressed in [10], [15], [19]

it is not completely clear what are the advantages of ABAC over

RBAC and vice versa when it comes to smart home IoT in specific

and smart IoT application domains in general.

Recently Ameer et al. [15] introduced the EGRBAC model

for smart home IoT [15], in which they extended an RBAC

model to propose a dynamic model that can capture different

permissions, devices, and environmental characteristics, thereby

solving the RBAC limitation of capturing devices and environment

information. Shortly after, they proposed the HABAC model for

smart home IoT [10], an ABAC-based model specifically designed

to meet smart home IoT requirements. Moreover, they performed

a theoretical comparison between the expressiveness power of the

two models, where they concluded that a hybrid model combining

EGRBAC and HABAC characteristics would better capture access

control requirements in the smart home IoT environment. A

similar conclusion was also derived for other IoT application

domains by different researchers in the literature [8], [9], [10],

[11], [12], [13]. These researchers reiterated the need for hybrid

models that combine ABAC and RBAC-based models’ advantages

while mitigating their disadvantages. In this research, we further

motivate the need for hybrid access control models for smart home

IoT that combine the advantages of the EGRBAC model (which

is an extended RBAC-based model for smart home IoT) and the

HABAC model (which is an extended ABAC-based model for

smart home IoT) for the following reasons.

1. Role-based Access control models are incapable of handling

dynamic attributes.

In general, to obtain a dynamic access control model, we have two

types of attributes that need to be expressed and used in authoriza-

tion policies: static attributes and dynamic attributes [14]. Static

attributes have relatively fixed values over a long period. Setting

and changing the values of static attributes typically requires

administrator intervention, for instance, the user relationship to

the house, user skill set, the danger level of the device operations,

and device owner. On the other hand, dynamic attributes reflect

contextual properties that can change at any time due to various

circumstances, possibly rapidly and unpredictably, such as time of

the day, user location, and device temperature. Values of dynamic

attributes are automatically determined by sensors deployed in the

smart home under homeowner control.

RBAC-based models, including EGRBAC, can effectively

capture static user attributes and in some models, static device

attributes and static and dynamic environment attributes. On the

other hand, expressing users’ and devices’ dynamic attributes in

RBAC models, including EGRBAC, creates significant difficulties

and can be costly and cumbersome for two principal reasons.

The multiplicity of combinations that need to be considered can

lead to role explosion. Moreover, RBAC-based models, including

EGRBAC, lack mechanisms to dynamically activate and deac-

tivate different users, sessions, and roles according to varying

dynamic characteristics. For example, consider a use case where

the homeowner wants to permit teenagers to use the front door

lock permissions in some exceptional circumstances when they

are granted a token by one of their parents. In RBAC systems,

including EGRBAC, we could construct different user roles for

different token values for each teenager. However, this may

result in having so many users’ roles. Moreover, no mechanism

exists to dynamically activate and deactivate specific user roles

according to the current users’ assigned tokens. To reduce the

role explosion, we could define a single role for each token value

for all teenagers. However, we would also need a mechanism

for the RBAC model to dynamically activate or deactivate users’

membership in different roles according to their current tokens’

values. A similar situation arises in EGRBAC when we deal with

dynamic device attributes, where increasing numbers of devices

and dynamic attributes will lead to the explosion of device roles.

See supplemental material for more information.

Unlike traditional computing systems, IoT systems have dy-

namic nature. The dynamism of communication between people,

connected devices, data, utility, and the changing nature of the

system and environment characteristics in smart IoT connected

systems requires actors’ rights and access requirements to change

accordingly. Hence, it is critical to have an access control model

that captures different static and dynamic users’, devices’, and

environmental characteristics.

2. Access administration tasks are simpler in RBAC models

than in ABAC models.

In RBAC models, including EGRBAC, determining the role struc-

ture could take much effort, but when completed, access review

is an easy task. It is easy to define who has what permissions

by looking into a user’s roles. On the other hand, in ABAC-

based models, including HABAC, to determine the permissions

available to a particular user, a large set of rules might need to

be executed in exactly the same order the system applies them.

This can make it practically impossible to determine risk exposure

for a given user, as noted by [14]. Users provisioning is easier

in RBAC-based models (including EGRBAC) than in ABAC-

based models (including HABAC). In RBAC models, users or

devices provisioning requires the administrator (the homeowner)

to assign users’ roles or devices’ roles to newly created users

or devices, respectively. Alternatively, in ABAC-based models,

the administrator must configure different attribute values for

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

3

newly provisioned users and devices. Moreover, in RBAC-based

models changing the set of permissions available to any user

require changing the set of roles assigned to that user. However,

changing the set of permissions available to any user in ABAC-

based models is a more complicated task. Generally speaking,

RBAC-based models trade-up front role structuring effort for

ease of administration and user permission review, while ABAC-

based models make the reverse trade-off: it is easy to set up, but

analyzing or changing user permissions can be problematic.

3. HABAC cannot prescribe limits on the set of permissions

available for each user

In EGRBAC, we have three types of constraints: (1) Static Separa-

tion of Duty, (2) Dynamic Separation of Duty, and (3) Permission-

role constraint [15]. On the other hand, in HABAC, we have two

constraints: (1) Constraints on user attributes, equivalent to the

static separation of duty, and (2) Constraints on session attributes,

equivalent to the dynamic separation of duty. However, ABAC-

based models, including HABAC, cannot handle permission-role

constraints [10].

Permission-role constraints prevent specific users’ roles from

being capable of getting access to specific permissions at as-

signment time. This constraint allows system administrators to

prevent future assignments that enable specific roles to get ac-

cess to specific permissions. In HABAC, on the other hand, we

cannot create something equivalent to EGRBAC permission role

constraints. The main reason behind that is that in EGRBAC, the

way a user get access to a specific set of permissions happens

through a series of assignments. The most critical assignment is

the role pair device role assignment (RPDRA), which assigns

role pairs to device roles. Hence, by controlling RPDRA, we

can control which role pairs and hence roles get access to which

device roles and hence permissions. In HABAC, we do not have a

similar ªchoke pointº that can be controlled to prevent inadvertent

or malicious assignments that may lead to unwanted access rights.

This is a significant advantage of EGRBAC, where we can enforce

such constraints at assignment time. See supplemental material for

more information.

From the above, a valid question is: Can we combine these

two models to combine their advantages while eliminating their

disadvantages? Developing hybrid models combining HABAC

and EGRBAC features may be the most suitable for smart home

IoT. Moreover, the high dynamism nature of smart home IoT

is common in the majority of IoT application domains. Hence,

hybrid models are likely the most suitable for IoT systems in gen-

eral. The authors in [14] suggested three different approaches to

combine RBAC [20] and ABAC [21] in a brief and high level way.

These approaches are the dynamic roles approach, the attribute-

centric approach, and the role-centric approach. However, they

did not formalize these approaches into formal policy models nor

implement or test them.

Inspired by the role-centric approach and the attribute-centric

approach, in this research, we proposed two approaches to com-

bine EGRBAC and HABAC: (a) Role-centric approach to build

HyBACRC on top of EGRBAC. (b) Attribute-centric approach to

build HyBACAC on top of HABAC. The reasons behind using

two different approaches to develop two models are as follow:

1) If an RBAC-based model is already implemented, model de-

signers can extend it using the role-centric approach without

replacing the entire model. On the other hand, if an ABAC-

based model is already implemented, model designers can

extend it using the attribute-centric approach without the need

to replace the entire system.

2) To provide policy model designers with two approaches for

building hybrid models with the same expressiveness power.

Choosing between them will be a trade-off between consid-

erable front role structuring effort for ease of administration

and access review in the role-centric model, on the one

hand, and between easy setup effort but more complicated

administration and access review tasks in the attribute-centric

model on the other hand.

The basic idea in the approach of the dynamic roles is to

use dynamic attributes by a front-end module to determine the

user’s role, retaining a conventional role structure but changing

role sets dynamically. The reason for avoiding the dynamic role

approach is that the home IoT environment is rich with attributes.

Having many combinations of attributes’ values may result in

large numbers of user roles and device roles, further complicating

the model and implementation. Such an approach may better fit

environments with few dynamic attributes.

It is true that these models (EGRBAC, HABAC, HyBACRC ,

and HyBACAC) are proposed for the smart home IoT use case.

However, they can be adapted and implemented in any IoT

environment. Indeed, there is no restriction in using these models

outside the home IoT use case scope. Hence, having a family

of access control models ranging from relatively simple to more

sophisticated with better features and more expressiveness power

will provide policy designers with a range of models to choose

from according to the environment and the business requirements.

The main contributions of this paper are as follows.

• We motivate the need for hybrid models that combine ABAC

and RBAC components to better capture smart home IoT

access control requirements in specific and other IoT appli-

cation domains in general.

• We propose two hybrid models for smart home IoT access

control. In developing these models, we followed a role-

centric approach to develop HyBACRC and an attribute-

centric approach to develop HyBACAC . Each model is for-

mally defined and illustrated with a use case.

• To verify the applicability of the HyBACRC and the

HyBACAC models using commercially available systems, we

provide proof of concept implementation for each model.

• We conduct a comprehensive theoretical comparison between

the HyBACRC model, the HyBACAC model, the EGR-

BAC model, and the HABAC model, where EGRBAC and

HABAC are access control models previously developed to

meet smart home IoT requirements.

2.1 Threat Model

In this paper, our threat model is the insiders with legitimate

digital and physical access to the house, such as family members,

guests, and workers. Our goal is to ensure that legitimate users get

access only to what they are authorized to by the house owner.

3 RELATED WORK

IoT technology has been investigated by many security researchers

to identify its security and privacy vulnerabilities and to investigate

design issues in different IoT frameworks, as in [22], [23], [24],

[25], [26], [27], [28], [29], [30], [31], [32], and [29], [33], [34],

[35], [36], [37] respectively. Access control in IoT is one of the

most critical security services that mostly all researchers agree

upon. Ouaddah et al. [38] provide an extensive survey on access

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

4

control in IoT environments. The authors in [39], [40], [41], [42]

also provided surveys on IoT applications access control models,

challenges, and requirements. The rest of this section analyzes

IoT access control models from the literature. The models are

categorized according to their foundational model, viz., RBAC,

ABAC, UCON, and CapBAC.

IoT Access Control Models Based On RBAC

The basic concept of the role-based access control (RBAC) model

[20], [43] is that permissions are associated with roles, and users

are made members of appropriate roles, thereby acquiring the

roles’ permissions. In [44], the authors extended RBAC by intro-

ducing context constraints. However, they mainly focused on the

environment of web services. Researchers in [18], [45] proposed

two different solutions, but both of them are focused on Web of

Things [46], [47]. Their models are not adequate for smart homes.

In the first solution, the architecture is completely centralized in

a central access control decision facility coupled with a database.

Access control decisions are taken outside the house, requiring a

live connection and increasing the attack surface. On the other

hand, the main drawback of the second solution is the strong

attachment to Social Network Services (SNS). Resource owners

and requesters must have an SNS profile or account to interact

with each other, which is unsuitable in the case of smart homes

where we have kids that may not have a social network account,

and we may have workers with whom one may not want to

connect in social networks, like a plumber who should access

the house for one time. Moreover, this solution introduces the

SNS provider as a trusted third party. The RBAC model for IoT

was also adopted in [48], [49]. However, the authors focus on

providing an authentication protocol, while they only gave a high

level overview of their RBAC model. Many works adapt the RBAC

model to IoT [6], [50]. However, the use of resource-constrained

devices is rarely addressed. Moreover, as we mentioned in Section

2, RBAC-based models cannot handle dynamic attributes.

IoT Access Control Models Based on ABAC

Different attribute-based access control (ABAC) models have been

proposed in the literature (e.g. [21], [51]). In ABAC, access

is granted according to attributes associated with the user and

resource. In [52], and [53] the authors proposed sophisticated

attribute-based encryption (ABE) models for smart grids. How-

ever, they did not discuss the ABAC models that they consid-

ered. Moreover, the ABE model may not be appropriate for

computationally constrained devices as in smart things. In [54],

the authors provided an attribute-based signatures approach to

support anonymous access control. In [55], the authors introduced

a formalized dynamic and fine-grained ABAC model for the smart

car use cases. Bhatt et al. [56] proposed a conceptual attribute-

based access control and communication control model for IoT.

However, their access control model does not capture environment

attributes.

IoT Access Control Models Based on CapBAC

Capability-based access control (CapBAC) utilizes the concept of

capability, first introduced in [57], as a token or key that gives the

possessor permission to access an entity or object in a computer

system. Much work has been done in the literature using CapBAC

in IoT. The major drawback of the CapBAC model is that it

requires all devices to implement CapBAC, which is unlikely

given the heterogeneity of the home smart things. Moreover, in

CapBAC individual devices or gateways should act as policy

decision points, which can be inconvenient on computationally

and power constrained devices. Authors in [38] give a survey on

solutions proposed using the CapBAC model.

IoT Access Control Models Based on UCON

The distinctive properties of usage control (UCON) beyond tra-

ditional ABAC are the continuity of access decisions and the

mutability of subject and object attributes [58], [59], [60]. A few

solutions have been proposed in the literature based on UCON.

However, these models cannot be adopted yet for various reasons.

In [61], the model is proposed as a Device to Services (D-S) access

control model. Moreover, no implementation was provided; only

two theoretical experiments were introduced and assessed. In [62],

the authors mainly focused on providing a distributed Peer-to-Peer

(P2P) architecture. They did not consider how to use their system

to grant users access to different smart things in the house. In

contrast, in our model, we demonstrated by use cases study and

implementation how to use our model to control users’ access to

smart things. Finally, unlike our model, in [63], the authors did

not consider justifying and illustrating the fitness of their model

for smart home IoT access control challenges.

IoT Access Control Models Based on Blockchains

Some solutions built on blockchain technology have been

proposed (e.g., [64], [65], [66]. However, as [65] described,

blockchain technology has some technical characteristics that

could limit its applicability. First, cryptocurrency fees are a fun-

damental part of blockchain-based platforms, and all transactions

include a fee. Second, transactions take time to get accepted into

the blockchain, impacting processing time.

IoT Access Control Models Based on Other Models

In the literature, several other access control models for IoT

have been proposed. For instance, in [67] the authors proposed

a certificate-based device access control model in an IoT environ-

ment. Researchers in [17], [38], [39], [40], [41] have conducted

surveys on different IoT access control models in the literature.

Recent research by [2] outlined a new perspective on home

access control policies. According to them, smart home IoT has

unique characteristics that require rethinking access control. Nev-

ertheless, very few IoT solutions are specifically designed to meet

smart home IoT requirements. Here are some examples. ABAC

access control framework for smart homes is described in [5].

However, use cases and performance evaluations are lacking. The

authors in [68] developed GRBAC, which introduced the notion of

environment and device roles to capture environmental conditions

and to enable device categorization, respectively, but did not give a

formal model. Subsequently, they provided a brief but incomplete

formalization without implementation [69]. Furthermore, in [70],

an identity-based encryption model was described to implement

a function-based access control model in smart homes. Authors

of [71] presented a protocol to secure and authenticate smart

homes. In addition, some researchers [72] have created a multi-

user, multi-device access control mechanism for a smart home.

The authors in [73] considered the ABAC model presented in

[21] and provided an enforcement architecture model for smart

home IoT. Based on He et al analysis [2] and Ouddah et al survey

[38], the authors in [15] recently proposed a criteria for home IoT

access control models. Accordingly, they proposed the EGRBAC

model. It is an RBAC-based policy model for smart home IoT

access control that complies with both [2], and [15] characteristics.

Comparing EGRBAC to traditional RBAC, it incorporates contex-

tual environmental changes and different device and permission

characteristics. Hence, it rebuts the argument that RBAC-based

models are unsuitable when handling the environment and device

or permissions characteristics. However, their model can not cap-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

5

ture dynamic attributes. Recently, Ameer et al. [19] provided an

ABAC-based access control model for smart home IoT. However,

as mentioned in Section 2 ABAC-based models cannot limit

the permissions available for each user. Moreover, administration

tasks are more complicated in ABAC-based models than in RBAC-

based models. Few hybrid access control models that combine

ABAC and RBAC features were developed in the literature [8],

[9], [74], [75]. However, non of them developed explicitly to meet

smart home IoT challenges. Furthermore, as [76] described, none

of them provided an implementation for their model. Moreover,

except for [74] they all followed the dynamic role approach.

Recently, some researches suggested the use of activity-centric

access control [77], [78], [79] and the score-based access control

[80] in IoT application domains. However, these ideas are still in

their early preliminary stages and have not yet formed into actual

policy models.

4 HYBACRC MODEL

Fig. 1: Smart Home IoT HyBACRC Model

This section introduces the HyBACRC model. The model is

conceptually depicted in Figure 1 while formal definitions are

given in Tables 1 and 2. HyBACRC is a hybrid model that is

built on top of EGRBAC. We followed a role-centric approach

in developing HyBACRC . In general, we have two types of

attributes that capture different users, devices, and environment

characteristics. These types are static attributes and dynamic

attributes. Static Attributes tend to remain static (they evaluate

to the same values) over a long period. Setting and changing the

values of static attributes may require administrator intervention,

for example, the user relationship to the house, the danger level

of the device, etc. On the other hand, dynamic attributes are

constantly changing due to various circumstances, possibly rapidly

and unpredictably, for instance, user location, device temperature,

etc. Values of dynamic attributes are automatically determined

by sensors deployed in the smart home and under homeowner

control. In this role-centric approach, relatively static attributes

(for users, sessions, and devices) define the user’s and device’s

roles. On the other hand, dynamic attributes define attribute-

based rules within the scope of the relatively static roles. In

this way, we avoid costly designs that might result from purely

using roles or attributes. For example, consider a system with ten

user attributes, four static and six dynamic. In the worst case,

this could result in 210 roles in RBAC or 210 rules in ABAC.

Establishing a policy structure based on the four static and six

dynamic attributes amounts to a worst-case of 16 roles and 64 rules

while effectively separating the policy concerns of the relatively

static and intrinsically dynamic attributes. Moreover, using this

hybrid design solves both problems of role explosion and the need

for a dynamic role activation and deactivation mechanism when

trying to capture dynamic attributes in role-based access control

models (including the EGRBAC model), as discussed in Section

2. The basic components of HyBACRC are discussed below.

Basic sets and assignmnets: Users (U) set refers to humans

interacting with smart home devices as authorized. Roles (R)

are similar to the traditional RBAC user’s roles. In smart homes,

however, the role is a way to express the relationship between the

user and the house’s family, including parents, kids, teenagers,

babysitters, etc. The many-to-many UA relation specifies that

one user can have more than one role. An example of a user

with two different roles is a neighbor who also is a plumber who

needs temporary access to repair an appliance and therefore should

have different privileges as a worker. Sessions (S) are created by

users. Each user creates one or more sessions during which he

may activate a subset of his assigned roles. A user might have

multiple sessions active concurrently and asynchronously. Each

session is linked to a unique, controlling user through the many

to one SU relation. Each session is mapped to a set of associated

roles through the many to many SR relation. Smart home devices

are represented by the set of devices (D). The operation (OP)

set refers to the actions allowed to be performed on devices as

specified by device manufacturers. The approval of an operation

to be performed on a device is called permission, which is a device

operations pair. The permissions set (P) is a subset of D × OP .

The set device roles (DR) represents a mean for categorizing

permissions of different devices. For example, we can categorize

the dangerous permissions of various smart devices by creating

a device role called dangerous devices and assigning dangerous

permissions (such as turning on the oven, turning on the gas

stove, and opening and closing the front door lock) to it. As-

signing different permissions to different device roles is captured

through the many-to-many set of assignments PDRA. Environ-

ment roles (ER) represent environmental circumstances, such

as daytime/nighttime. Environment roles are turned on/off (i.e.,

triggered) by subsets of Environment Conditions (EC) such as

daylight. These environmental conditions must be active together

to trigger a specific environmental role through the EA relation.

The role pairs (RP) set represents different combinations of roles

and environment roles’ subsets. Each role pair rp has a role

part rp.r, the single role associated with rp, and an environment

role part rp.ER, the subset of the environment roles associated

with rp. Since some ER subsets may not be meaningful, the

permissible role pairs RP are defined as a subset of R × 2ER.

Each role has one or more role pairs associated with it through the

relationship RPRA. Each role pair is associated with a subset of

ER through RPEA. RPDRA binds these components together

by assigning device roles to role pairs. Accordingly, for each role

pair rp, the single role associated with it through RPRA has

access to all device roles assigned to it through RPDRA when

the set of environment roles associated with it through RPEA are

active.

Derived Functions: There are three derived functions that are

useful to define. First, the function roles(s) which takes a session

s as an input and returns the set of roles assigned to s. Second,

the function users(s) takes a session s as an input and returns

the unique user who created s (constant for the session lifetime).

Third, the function droles(p) takes permission p as an input

and returns the set of device roles to which the permission p is

assigned.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

6

TABLE 1: HyBACRC Model Formalization Part I: Basic Sets and Dynamic Attributes

Users, Roles and Sessions
−U and R are sets of users and roles respectively (home owner specified)
−UA ⊆ U ×R, many to many user role assignment relation (home owner specified)

We define the derived function roles(u) : U → 2R, where: roles(ui) = {rj | (ui, rj) ∈ UA}
−S is the set of sessions (each session is created, terminated and controlled by an individual user)
−SU ⊆ S × U , many to one relation assigning each session to its single controlling user

We define the derived function user(s) : S → U , where: user(si) = uj such that (si, uj) ∈ SU
−SR ⊆ S ×R, many to many relation that assigns each session to a set of roles that can be changed by the controlling user

We define the derived function roles(s) : S → 2R, where: roles(si) = {rj | (si, rj) ∈ SR}
It is required that roles(s) ⊆ roles(user(s)) at all times

Devices, Operations, Permissions and Device Roles
−D is the set of devices deployed in the smart home (home owner deployed)
−OP and P ⊆ D ×OP are sets of operations and permissions respectively (device manufacturers specified)
−DR is the set of device roles (home owner specified)
−PDRA ⊆ P ×DR, many to many permissions to device roles assignment (home owner specified)

We define the derived function droles(p) : P → 2DR, where: droles(pi) = {drj | (pi, drj) ∈ PDRA}
Environment Conditions and Environment Roles
−EC is the set of boolean environment conditions (determined by sensors deployed in the smart home under home owner control)

At any moment each eci ∈ EC is either True or False depending on the state of the corresponding sensor
−ER is the set of environment roles (home owner specified)

−EA ⊆ 2EC × ER, many to many environment role activation relation (home owner specified)
At any moment, er ∈ ER is activated iff (∃(eci1, eci2, . . . , ecin), er) ∈ EA)[eci1 ∧ eci2 ∧ . . . ∧ ecin = True] at that moment

Role Pairs

−RP ⊆ R× 2ER, many to many role pairings of user role and subsets of environment roles (home owner specified)
For rp = (ri, ERj) ∈ RP , we define rp.r = ri and rp.ER = ERj

We define the derived relation RPRA ⊆ RP ×R where: RPRA = {(rpm, rn) | rpm ∈ RP ∧ rpm.r = rn}
We define the derived relation RPEA ⊆ RP × 2ER where: RPEA = {(rpm, ERn) | rpm ∈ RP ∧ ERn = rpm.ER}

Role Pair Assignment
−RPDRA ⊆ RP ×DR, many to many RP to DR assignment (home owner specified)
Constraints

−PRConstraints ⊆ 2P × 2R, many to many permission-role constraints relation (home owner specified)
For each (Pi, Rj) ∈ PRConstraints it is required that
(∀pm ∈ Pi)(∀rn ∈ Rj)(∀(rpp, drq) ∈ RPDRA)[(pm, drq) /∈ PDRA ∨ rpp.r ̸= rn]

−SSDConstraints ⊆ R× 2R, many to many static separation of duty constraints relation (home owner specified)
For each (ri, Rj) ∈ SSDConstraints it is required that (∀u ∈ U)(∀r ∈ Rj)[(u, r) ∈ UA =⇒ (u, ri) /∈ UA]

−DSDConstraints ⊆ R× 2R, many to many dynamic separation of duty constraints relation (home owner specified)
For each (ri, Rj) ∈ DSDConstraints it is required that (∀s ∈ S)(∀r ∈ Rj)[(s, r) ∈ SR =⇒ (s, ri) /∈ SR]

Dynamic Attributes
−DUSA and DDA are finite sets of dynamic user and session attribute functions and dynamic device attribute functions respectively,

where DUSA ∩DDA = ∅ for convenience (determined by sensors deployed in the smart home under home owner control)
−Each session s inherits a subset of the dynamic attribute functions of its unique user creator (controlled by the session creator user(s))

For every inherited attribute function att ∈ DUSA, att(s) = att(user(s)) at all time
For every non-inherited attribute function att ∈ DUSA, att(s) is undefined and its use in any logical formula renders that formula false

−For each att ∈ DUSA ∪DDA, Range(att) is the attribute range which is a finite set of atomic values
−attType : DUSA ∪DDA → {set, atomic}.
−Each att ∈ DUSA ∪DDA correspondingly maps users in U or sessions in S, or devices in D to atomic or set attribute values. Formally:

att : U or S or D →

{

Range(att), if attType(att) = atomic

2Range(att), if attType(att) = set

At any moment, the value of att for a given user or device is automatically determined by sensors deployed in the smart home
Attributes Authorization Function
−Authorization(s : S, op : OP, d : D) is a logic formula defined using the grammar of Table 2 (home owner specified)

It is evaluated for a specific session si, device dj and operation opk as specified in Table 2

CheckAccess Predicate
−CheckAccess is evaluated when session si attempts operation opk on device dj while the environment conditions in ECl are True
−CheckAccess(si, opk, dj , El) evaluates to True or False using the following formula:

Authorization(si, opk, dj) ∧
(∃(rpm, drn) ∈ RPDRA) [((dj , opk), drn) ∈ PDRA ∧ (si, rpm.r) ∈ SR ∧

rpm.ER ⊆ {er ∈ ER | (∃EC′

l ⊆ ECl)[(EC′

l , er) ∈ EA]}]

TABLE 2: HyBACRC Model Formalization Part II: Attributes Authorization Function

Attributes Authorization Function

−Authorization(s : S, op : OP, d : D) is a propositional logic formula returning true or false specified using the following grammar.

• α ::= term | term ∧ term | term ∨ term | (term) | ¬term | ∃x ∈ set.α | ∀x ∈ set.α
• term ::= set setcompare set | atomic ∈ set | atomic /∈ set | atomic atomiccompare atomic
• setcompare ::=⊂|⊆|̸⊆
• atomiccompare ::=<|=|≤
• set ::= dusa(s) | dda(d) | roles(s) | droles((op, d)), for attType(dusa) = set and attType(dda) = set
• atomic ::= dusa(s) | dda(d) | value, for attType(dusa) = atomic and attType(dda) = atomic

−For a specific session si, device dj and operation opk , the authorization function Authorization(si, opk, dj) is evaluated by substituting the actual attribute values of dusa(si),
dda(dj), roles(si) and droles((opk, dj)) for the corresponding symbolic placeholders and evaluating the resulting logical formula to be True or False. Any term that references an
undefined attribute value is evaluated as False

In HyBACRC , at any specific moment and depending upon

the current active roles in a session that belong to a user u and the

current active environment conditions (which determine the cur-

rent active environment roles), some role pairs are active. Hence,

the maximum set of permissions that may currently be available

for the user u is equal to the set of permissions assigned to the

device roles which are assigned to the current active role pairs.

However, which permissions among these maximum permissions

are currently available for this user is further determined by the

current values of the dynamic user and session attributes and the

current values of the dynamic device attributes.

Dynamic attributes: These components are shown as grey rect-

angles in Figure 1. Attributes are characteristics that are used in

access control decisions. An attribute is a function that takes an

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

7

entity, such as a user, and returns a specific value from its range.

A finite set of atomic values gives an attribute range. An atomic

valued attribute will return one value from the range, while a set

valued attribute will return a subset of the range. As discussed ear-

lier, dynamic attributes change due to different rapidly changing

conditions. An example of users’ dynamic attributes can be user

location, user temporal health condition, user waking status, etc.

Similarly, we may be interested in device location, temperature,

usage status, etc. Dynamic user and session attribute functions

(DUSA) are the set of attributes associated with both users

and sessions. Each session s inherits a subset of its unique user

creator’s dynamic attributes. If a session s inherits a dynamic user

session attribute dusa from his user creator user(s), then it is

required that dusa(s) = dusa(user(s)). How the inheritance

process happens is outside the scope of HyBACRC operational

model and can be considered as part of an administrative model.

The dynamic device attribute functions set (DDA) is the set of

dynamic attributes associated with devices. In HyBACRC , we do

not consider environment and operations dynamic attributes for

the following reasons. First, regarding the element environment

roles (ER), the way it is designed and associated with the role

pairs (RP) element enables it to capture both static and dynamic

environment attributes. A role pair will be active only if the set of

associated environment roles are currently active and triggered by

their corresponding environment conditions. Second, operations

(OP) are basically defined by the manufacturer and usually have

a static nature, such as dangerous or benign.

Attributes authorization function (rules): An attribute autho-

rization function is a logical formula evaluated for each access

decision. It is defined using the grammar of Table 2. For a

specific session si, device dj and operation opk the authorization

function Authorization(si, opk, dj) is evaluated by substituting

the actual attribute values of dusa(si), dda(dj), roles(si) and

droles((opk, dj)) for the corresponding symbolic placeholders

and evaluating the resulting logical formula to be True or False.

The output of this function defines whether the requesting session

si is authorized to perform the requested operation opk on the

requested device dj at the current instance of time according to

the current dynamic attributes values of si and the current dynamic

attributes values of dj .

Check access predicate: The bottom part of Table 1 formalizes

the check access predicate of HyBACRC . Consider a session si
which attempts to perform operation opk on device dj when the

subset of environment conditions ECl are active. The access will

be granted if and only if both of the following are true:

1) The maximum set of permissions available for the session

si allows it to perform the operation opk on the device

dj according to the role membership and role activation

requirements. These are specified in the last two lines of

the authorization predicate in Table 1. The role membership

requirements can be stated in words as follows. There is a

role pair rpm and a device role drn assigned to each other

in RPDRA such that the following conditions are true: (i)

drn is assigned to the permission (dj , opk) in PDRA, (ii)

rpm.r is one of the active roles of si (as given in SR), and

(iii) each environment role er ∈ rpm.ER is active because

it is activated by a subset of the currently active environment

conditions ECl.

2) The authorization function Authorization(si, opk, dj)
evaluates to TRUE. This indicates that si is allowed to per-

form opk on dj according to the current dynamic attributes

values of si and dj .

Constraints: Constraints are invariants that must never be vio-

lated. In HyBACRC , we have three types of constraints, as shown

in the following.

Permission-role constraint. These constraints prevent RPDRA
assignments that would enable specific roles to access specifically

prohibited permissions. Formally, PRConstraints ⊆ 2P × 2R

constitute a many to many subsets of permissions to subsets of

roles relation. The basic idea in PRConstraint is that: For every

(Pi, Rj) in the set of PRConstraints, and for every pm ∈ Pi

and rn ∈ Rj , it is forbidden to assign any device role drx that the

permission pm is assigned to, to any role pair rpy with rn as the

role part of it (formally (rpm, drx) /∈ RPDRA).

Static Separation of Duty (SSD). It is the familiar SSD in RBAC.

It constrains the assignment of roles to users. Thus, if a user is

authorized to be a member of one role, he or she is not authorized

to be a member of another conflicting role [81].

Dynamic Separation of Duty (DSD). It is the familiar DSD

in RBAC. DSD allows users to be members of roles that do

not present a conflict of interest when acted independently as

part of different sessions but create conflicts when acted upon

simultaneously in the same session [81].

HyBACRC is an operational access control model. Managing

and enforcing different types of constraints can be considered part

of an administrative access control model, which is outside the

scope of this manuscript.

4.1 Use Case Demonstration
Here we present one use case scenario to demonstrate how

to configure HyBACRC components to enforce specific access

control policies. This use case has the following objectives. (a)

Authorize teenagers to use dangerous permissions in kitchen

devices (open the oven and turn on the oven) only when a parent is

in the kitchen and the current temperature of the oven is less than

or equal to 150◦. (b) Authorize teenagers to unconditionally use

nondangerous permissions in kitchen devices (close the oven, turn

off the oven, open and close the fridge). (c) Authorize teenagers to

use the front door lock permissions (lock and unlock) if they are

temporarily granted those permissions by one of the parents. (d)

Allow teenagers to use entertainment devices permissions during

weekends evenings and nights if the accessed device is not in use

by someone else. (e) Allow kids to use kids friendly operations in

entertainment devices which are, turning on and off the device and

rated G content only during weekend evenings and if the accessed

device is not in use by someone else. (f) Finally, allow parents to

use any operation in any device unconditionally. For this use case,

HyBACRC will be configured as shown in Figure 2.

First, we configure the maximum permissions available for

each user. We have five users bob, alex, suzanne, john,

and anne respectively assigned to roles parents, kids, kids,

teenagers, and teenagers. The devices include Oven, Fridge,
FrontDoorLock, PlayStation, and TV . The device Oven
has four operations, turning on the oven OnOven, turning off

the oven OffOven, open the oven OpenOven, and close the oven

CloseOven. The device Fridge has three operations, open the

fridge OpenFridge, close the fridge CloseFridge, and check

the fridge temperature Check temperatureFridge. The device

FrontDoorLock has two operations, lock LockFrontDoorLock

and unlock UnlockFrontDoorLock. The PlayStation device

has two operations, turning on OnPS and turning off OffPS .

Finally, the TV device has four operations, turning on OnTV ,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

8

U = {bob, alex, suzanne, john, anne}, R = {parents, kids, teenagers}
UA = {(bob, parents), (alex, kids), (suzanne, kids), (anne, teenagers),(john, teenagers)}

D = {Oven, Fridge, FrontDoorLock, P layStation, TV }, OP = OPOven ∪OPFridge ∪OPFrontDoorLock ∪OPP layStation ∪OPTV , where

OPOven = {OnOven,OffOven, OpenOven, CloseOven}, OPFridge = {OpenFridge, CloseFridge, Check temperatureFridge},

OPFrontDoorLock = {LockFrontDoorLock, UnlockFrontDoorLock}, OPP layStation = {OnPS,OffPS} ,OPTV = {OnTV ,OffTV , GTV , PGTV , RTV }
P = POven ∪ PFridge ∪ PFrontDoorLock ∪ PP layStation ∪ PTV , where

POven = {Oven} ×OPOven, PFridge = {Fridge} ×OPFridge, PFrontDoorLock = {FrontDoorLock} ×OPFrontDoorLock,

PP layStation = {PlayStation} × {On,Off}, PTV = {TV } × {OnTV ,OffTV , GTV , PGTV , RTV }
Let P1 = {Oven} × {OnOven, OpenOven}, P2 = {Oven} × {OffOven, CloseOven}, P3 = {TV } × {OnTV ,OffTV , GTV },

DR = {Dangerous Kitchen Permissions,Non Dangerous Kitchen Permissions, Front Door Lock,Kids Friendly Content,

Entertainment Devices}
PDRA = P1 × {Dangerous Kitchen Permissions} ∪ (P2 ∪ PFridge)× {Non Dangerous Kitchen Permissions} ∪

PFrontDoorLock × {Front Door Lock} ∪ PTV × {Entertainment Devices} ∪ (P3 ∪ PP layStation)× {Kids Friendly Content}

EC = {Parent Is In The Kitchen,Weekends, Evenings,Nights, TRUE}
ER = {Teenagers Kitchen T ime,Kids Entertainment T ime, Teenagers Entertainment T ime,Any T ime}
EA = {({Parent Is In The Kitchen}, T eenagers Kitchen T ime), ({weekends, evenings}, Kids Entertainment T ime),

({weekends, evenings}, T eenagers Entertainment T ime), ({weekends, nights}, T eenagers Entertainment T ime), (TRUE,Any T ime)}

RP = {(teenager, {Teenagers Kitchen T ime}), (teenager, {Teenagers Entertainment T ime}), (teenagers, {Any T ime}),
(kids, {Kids Entertainment T ime}), (parents, {Any T ime})}

RPDRA = {((kids, {Kids Entertainment T ime}), Kids Friendly Contents),
((teenager, {Teenagers Entertainment T ime}), Entertainment Devices),
((teenager, {Teenagers Kitchen T ime}), Dangerous Kitchen Permissions),
((teenagers, {Any T ime}), Non Dangerous Kitchen Permissions),
((teenagers, {Any T ime}), F ront Door Lock), ((parents, {Any T ime}), Entertainment Devices),
((parents, {Any T ime}), Non Dangerous Kitchen Permissions), ((parents, {Any T ime}), Dangerous Kitchen Permissions),
((parents, {Any T ime}), F ront Door Lock)}

PRConstraints = {{(Oven,OnOven), (Oven,OffOven), (Fridge, OpenFridge), (Fridge, CloseFridge)}, {kids})}

DUSA = {Front Door Lock Token}, DDA = {Device Temperature, UsingStatus, UsingUser}
Front Door Lock Token : u : U → {True, False}, Front Door Lock Token : s : S → {True, False}
Device Temperature : d : D → {x|x is an oven temperature}, UsingStatus : d : D → {True, False}, UsingUser : d : D → U

Authorization(s : S, op : OP, d : D) ≡
(parents ∈ R(s)) ∨ (teenager ∈ R(s) ∧ Dangerous Kitchen Permissions ∈ drole((op, d)) ∧ Device Temperature(d) ≤ 150◦) ∨
(teenager ∈ R(s) ∧ Non Dangerous Kitchen Permissions ∈ drole((op, d))) ∨
(teenager ∈ R(s) ∧ Entertainment Devices ∈ drole((op, d)) ∧ (¬UsingStatus(d) ∨ UsingUser(d) = user(s)) ∨
(teenager ∈ R(s) ∧ Front Door Lock ∈ drole((op, d)) ∧ Front Door Lock Token(s) = True) ∨
(kids ∈ R(s) ∧Kids Friendly Contents ∈ drole((op, d)) ∧ (¬UsingStatus(d) ∨ UsingUser(d) = user(s))

Fig. 2: HyBACRC Use Case Configuration

turning off OffTV , rated G content GTV , rated PG content

PGTV , and rated R content RTV . We have five device roles.

We assign the oven permissions {OnOven, OpenOven} to the

device role Dangerous Kitchen Permissions. We assign

the oven permissions {OffOven, CloseOven} and all fridge per-

missions to the Non Dangerous Kitchen Permissions
device role. Moreover, we assign all front door lock permis-

sions to the device role Front Door Lock. All the permis-

sions of the TV and the PlayStation devices are assigned to

Entertainment Devices device role, and an appropriate subset

of these permissions are assigned to Kids Friendly Content
device role. EC comprises Parent Is In The Kitchen,

weekends, evenings, nights, and TRUE, respectively ac-

tive when a parent is in the kitchen, on weekends, during the

evening, during the night, and always. The environment role

Teenagers Kitchen T ime is active when the environment

condition Parent Is In The Kitchen is active. The environ-

ment role Kids Entertainment T ime is active when both

environment conditions weekends and evenings are active.

Similarly, the environment role Teenagers Entertainment
T ime is active when weekends and evenings or weekends
and nights environment conditions are active. The environment

condition Any T ime is always active.

RPDRA assignments specify the maximum permissions

available for each role according to the device roles assign-

ments and the current active environment roles. The first as-

signment indicates that kids can access the permissions as-

signed to the device role Kids Friendly Content when

Kids Entertainment T ime is active. The second assignment

shows that teenagers can access Entertainment Devices
device role when the environment conditions Teenagers
Entertainment T ime is active. The third assignment in-

dicates that teenagers can access the permissions assigned

to Dangerous Kitchen Permissions when Teenagers
Kitchen T ime environment role is active, whereas the

fourth assignment indicates that teenagers can access Non
Dangerous Kitchen Permissions device role at any time.

Moreover, the fifth assignment shows that teenagers can ac-

cess Front Door Lock device role at any time. Finally,

the last four assignments indicate that parents are authorized

to access Entertainment Devices, Dangerous Kitchen
Permissions, Non Dangerous Kitchen Permissions,

and Front Door Lock device roles at any time.

Next, we configure the dynamic attributes. We in-

troduce one Boolean dynamic user and session attribute

Front Door Lock Token, which is True when the home-

owner has granted this user a token indicating that this user

can access the front door lock device and False otherwise. The

detailed mechanism by which the homeowner grants a temporal

token for a specific user is outside the scope of the HyBACRC

operational model and can be considered as part of an admin-

istrative model. We also define three dynamic device attributes:

(1) Device Temperature whose value is determined by the

device’s temperature. (2) UsingStatus to indicate that a device

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

9

Fig. 3: Smart Home IoT HyBACAC Model

is in use (True) or not (False). (3) UsingUser, which maps each

device to the user currently using it (or is undefined if the device

is not in use).

Finally, we define the authorization function as a disjunc-

tion of six conjunctive propositional clauses (rules). This au-

thorization function further constrains the maximum permis-

sions available for each user based on the dynamic attribute

values. The first clause gives unconditional access to parents.

The following two clauses define teenagers’ authorization rules

concerning dangerous and non-dangerous kitchen permissions.

The second clause authorizes teenagers to access permis-

sions belonging to the Dangerous Kitchen Permissions
device role if the permission device has a temperature ≤
150◦. The third authorization rule gives teenagers access to

Non Dangerous Kitchen Permissions unconditionally.

The fourth authorization rule specifies that teenagers can ac-

cess Entertainment Devices device role permissions only

if another user does not use the requested device. The fifth

authorization rule specifies that teenagers can access Front
Door Lock device role permissions only if they have the front

door lock token indicating that they were allowed to access the

front door lock permissions by one of the parents. Finally, the

last clause specifies that kids can access the permissions assigned

to the Kids Friendly Content device role if the requested

permission’s device is not used by someone else.

5 HYBACAC MODEL

This section introduces the HyBACAC model. Figure 3 conceptu-

ally depicts the model components. The model formal definition

is given in Tables 3 and 4. HyBACAC model is a hybrid access

control model that is built on top of HABAC. We followed an

attribute-centric approach in developing HyBACAC , where the

user role is just one of many user attributes. In Section 2, we

mentioned that one of the HABAC limitations is that it cannot

limit the set of permissions available for each user as in EGRBAC.

To solve this limitation in HyBACAC , we introduced the concept

of Roles (R) (aka anti-roles), as we will explain in the following.

The basic components of HyBACAC are discussed below.

Basic Sets and Functions: Users (U) are humans interacting

directly with smart things. Users create sessions (S) to perform

some actions in the system. The session can only be terminated by

the user who created it. The function users(s) is used to associate

each session s with its unique user creator. Environment States set,

ES = {current}, is a singleton set that only includes the state

ªcurrentº. The current state is the picture of the environment in

the present time instant. The component might be extended to

include other instants of time, such as last week and last year,

for example, ES = {current, lastweek, lastyear}. Devices

(D) are smart home devices (smart things), such as smart door

locks. Operation (OP) refers to the actions performed on devices

following manufacturer specifications. Every device d is mapped

to the set of valid operations on d by the function ops(d).
Attributes are characteristics of users/sessions, devices,

operations, and environment states which are used in access

control decisions. Attributes are functions that take an entity,

such as a user, and determine a specific value from its range. For

each attribute function atti, there is a range of possible values

Range(atti) that atti can be evaluated to. An atomic valued

attribute will return one value from its range, while a set valued

attribute will return a subset of its range. Different attributes,

whether atomic or set valued attributes, can be categorized into

two types: static and dynamic. User/Session attribute functions

set (USA) is the set of attributes associated with both users

and sessions. Sessions inherit a subset of the attributes of their

unique creator. If a session s inherited a user session attribute

usa from his creator user user(s), then it is required that

usa(s) = usa(user(s)). How the inheritance process happens

is outside the scope of HyBACAC operational model and can

be considered as part of an administrative model. DA is a set

of attribute functions related to smart devices, such as ªkitchen

devicesº, ªventilation devicesº, and ªBob’s devicesº. OPA is the

set of attributes associated with operations. For instance, we may

want to characterize dangerous kitchen operations, so we create

an operation attribute entitled ªDangerous Kitchen Operationsº

and associate it with those operations. Different environment

characteristics such as ªtimeº and ªweatherº are captured through

the environment state attribute functions set (ESA). User/session

attribute functions and environment state attribute functions are

total functions, while operation attribute functions and device

attribute functions, on the other hand, are partial functions (since

we may have some devices or operations that are not assigned to

some attributes).

Roles(R): R is a finite set of roles (aka anti-roles) specified

by the homeowner. The homeowner assigns different roles to

different users. The function roles(u) maps each user u ∈ U to a

subset of roles (which are assigned to u by the homeowner). The

name anti-roles came from the idea that these roles are defined

to prevent unwanted access in permission-role constraints, as

explained in the following.

Constraints: These are invariants that must never be violated.

In HyBACAC and similar to HyBACRC , we have three types of

constraints as described below.

Permission-role constraints. HyBACAC incorporates constraints

that prevent specific users from accessing specific operations

on specific devices. By assigning different users to different

roles, permission-role constraints are then defined as a many to

many permissions to role constraints relation. These constraints

enable HyBACAC to limit the set of permissions available for

each user. For example, having a permission role constraint

prci ∈ PRConstraints, where prci = ({(dk, opl)}, {rm})
implies that a session si created by a user uj , where

rm ∈ roles(uj), cannot access the operation opl on the

device dk. Permission-role constraints are checked during

execution time as part of the check access predicate. This is unlike

the case in EGRBAC and HyBACRC where the permission-role

constraints are enforced at assignment time to prevent prohibited

assignments. As we discussed in Section 2, HABAC is not

capable of limiting the set of permissions available for different

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

10

TABLE 3: HyBACAC Model Formalization Part I: Basic Sets and Components

Basic Sets and Functions
−U is a finite sets of users (home owner specified)
−S is the set of sessions (each session is created, terminated and controlled by an individual user)
−The function user(s) : S → U maps each session to its unique creator and controlling user
−D is the set of devices deployed in the smart home (home owner deployed)
−OP is the set of possible operations on devices (device manufacturers specified)

−The function ops : D → 2OP specifies the valid operations for each device (device manufacturers specified)
−ES = {current} is a singleton set where current denotes the environment at the current time instance
Attribute Functions and Values
−USA,DA,OPA and ESA are user/session, device, operation and environment-state attribute functions respectively,

where for convenience we require USA,DA,OPA and ESA to be mutually exclusive
−Each session s inherits a subset of the attribute functions in USA from its unique user creator (controlled by the session

creator user(s)). For every inherited attribute function att ∈ USA, att(s) = att(user(s)) at all time
Unless otherwise specified use of a non-inherited session attribute in a logical formula renders that formula false

−For each attribute att in USA ∪DA ∪OPA ∪ ESA, Range(att) is the attribute range, a finite set of atomic values
−attType : USA ∪DA ∪OPA ∪ ESA → {set, atomic}.
−Each att ∈ USA ∪DA ∪OPA ∪ ESA correspondingly maps users in U /sessions in S, devices in D, operations in OP or

the environment state current to atomic or set attribute values. Formally:

att : U or S or D or OP or {current} →

{

Range(att), if attType(att) = atomic

2Range(att), if attType(att) = set

−Every att ∈ USA ∪DA ∪OPA ∪ ESA, att is designated to be either a static or dynamic attribute where
dynamic attributes must have corresponding sensors deployed in the smart home (under home owner control)

−Static attribute ranges and values are set and changed by administrator actions (by home owner or device manufacturers)
−Dynamic attribute ranges and values automatically determined by sensors deployed in the smart home (under home owner control) or

set and changed by home owner.
Constraints

−UAConstraint ⊆ UAP × 2UAP is the user attribute constraints relation (home owner specified) where
UAP = {(usa, v) | usa ∈ USA ∧ v ∈ Range(usa))}

Each uac = ((usax, vy), UAPj) ∈ UAConstraint specifies the following invariant:
{

(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[usax(ul) = vy ⇒ usam(ul) ̸= vn], if attType(usax) = attType(usam) = atomic

(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[vy ∈ usax(ul) ⇒ vn /∈ usam(ul)], if attType(usax) = attType(usam) = set

−SAConstraint ⊆ UAP × 2UAP is the session attribute constraints relation (home owner specified)
Each sac = ((usax, vy), UAPj) ∈ SAConstraint specifies the following invariant:



















(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ usax(user(sl)) = vy ∧ usam(user(sl)) = vn ⇒ sl does not inherit usam],

if attType(usax) = attType(usam) = atomic

(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ vy ∈ usax(user(sl)) ∧ vn ∈ usam(user(sl)) ⇒ sl does not inherit usam],

if attType(usax) = attType(usam) = set

Attributes Authorization Function
−Authorization(s : S, op : OP, d : D, current : ES) is a logic formula defined using the grammar of Table 4 (home owner specified)

It is evaluated for a specific session si, operation opk, device dj and environment state current as specified in Table 4

Roles (aka Anti-Roles)
−R is a finite set of roles (aka anti-roles) (home owner specified)

−The function roles : U → 2R maps each user to a subset of roles (home owner specified)

−PRConstraints ⊆ 2P × 2R, many to many permission-role constraints relation (home owner specified)
where P ⊆ D ×OP is a derived relation such that (d, op) ∈ P ⇔ op ∈ ops(d)

CheckAccess Predicate
−CheckAccess is evaluated when session si attempts operation opk on device dj in context of environment state current
−CheckAccess(si, opk, dj , current) evaluates to True or False using the following formula:
opk ∈ ops(dj) ∧ Authorization(si, opk, dj , current)) ∧
(∀(Px, Ry) ∈ PRConstraints)[((opk, dj) /∈ Px) ∨ (roles(user(si))) ∩Ry = φ]

users; hence it cannot support this type of constraint.

Constraints on user attributes. User’s attributes’ constraints

represent the static separation of duty concept. It imposes

restrictions on user attributes. If a specific attribute value is

assigned to a user, the user is prohibited from being assigned to

another attribute value. In defining this type of constraint, we

use the user attribute pairs set UAP as shown in Table 3. UAP
is a set of pairs. Each pair is a pair of a user attribute function

and a user attribute function’s value. For each pair (usa, v)
in a UAP set. usa is an attribute function in the user/session

attribute functions set, while v is a value in the usa attribute

function range of values. This is formally defined as following:

UAP = {(usa, v) | usa ∈ USA ∧ v ∈ Range(usa))}. For

example, consider the following user attribute constraint:

UAConstraint = {uaci}
uaci = ((Relationship, kid),

{(Adult, T rue), (FrontDoorLockToken, True)})

This constraint implies that for any user ux with an attribute

value pair (Relationship, kid) (in other words for any user ux

with Relationship(ux) = kid), that user ux cannot have the

following set of attribute functions values pairs {(Adult, T rue),
(FrontDoorLockToken, True)}. In other words, ux cannot be

assigned to: (1) the attribute Adult with the value True and (2)

the attribute FrontDoorLockToken with the value True.

Constraints on session attributes. These constraints enforce

restrictions on session attributes. Here, an individual user may

be assigned to different attributes simultaneously, and there is

no conflict of interest when these attribute values are inherited

independently by different sessions of the same user. However,

there is a conflict of interest when inherited by the same session.

In defining this type of constraint, we use the user attribute pairs

set UAP similarly to how we use them in users’ attributes’

constraints as shown in Table 3. The difference is that users’

attributes’ constraints are enforced on the set of attributes available

for each user. In contrast, sessions’ attributes’ constraints are

enforced on the set of attributes that can be inherited by one

session.

HyBACAC is an operational access control model. Managing

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

11

TABLE 4: HyBACAC Model Formalization Part II: Attributes Authorization Function

Attributes Authorization Function
−Authorization(s : S, op : OP, d : D, current : ES) is a propositional logic formula returning true or false specified using the following grammar.

• α ::= term | term ∧ term | term ∨ term | (term) | ¬term | ∃x ∈ set.α | ∀x ∈ set.α
• term ::= set setcompare set | atomic ∈ set | atomic /∈ set | atomic atomiccompare atomic
• setcompare ::=⊂|⊆|̸⊆
• atomiccompare ::=<|=|≤
• set ::= usa(s) | opa(op) | esa(current) | da(d), where attType(usa) = attType(opa) = attType(esa) = attType(da) = set
• atomic ::= usa(s) | opa(op) | esa(current) | da(d) | value, where attType(usa) = attType(opa) = attType(esa) = attType(da) = atomic

−For a specific session si, device dj and operation opk the authorization function Authorization(si, opk, dj , current) is
evaluated by substituting the actual attribute values of usa(si), da(dj), opa(opk) and esa(current) for the corresponding
symbolic placeholders and evaluating the resulting logical formula to be True or False

Any term that references an undefined attribute value is evaluated as False

and enforcing different types of constraints can be considered part

of an administrative access control model, which is outside the

scope of this manuscript.

Attributes Authorization function: An attribute authorization

function is a boolean function that is evaluated for each access

decision. It is defined using the grammar of Table 4. For a specific

session si, operation opk, and device dj the authorization function

Authorization(si, opk, dj , current) is evaluated by substitut-

ing the actual attribute values of usa(si), opa(opk), da(dj), and

esa(current) for the corresponding symbolic placeholders and

evaluating the resulting logical formula to be True or False. Any

term that references an undefined attribute value is evaluated as

False. Term refers to any atomic logical declarative sentence. An

atomic sentence is a type of declarative sentence that is either true

or false and cannot be broken down into other sentences [82].

Check Access Predicate: This predicate is evaluated for each

access request. When a session si attempts operation opk
on device dj in context of environment state current the

CheckAccess(si, opk, dj , current) predicate evaluates to True

or False. The check access predicate performs three checks, as

shown in the following:

1) opk ∈ ops(dj) Check if the requested operation is actually

allowed on the target device.

2) Authorization(si, opk, dj , current)) Check if the autho-

rization function evaluates to True. This indicates that the

user is allowed to perform the requested operation on the

target device according to the predefined configured policies.

3) (∀(Px, Ry) ∈ PRConstraints)[((opk, dj) /∈ Px) ∨
(roles(user(si))) ∩ Ry = φ] Check whether the user

who created the requesting session is prohibited from ac-

cessing the requested permission by one of the permis-

sion role constraints. This statement basically ensures that

for each permission role constraint (Px, Rx) in the set of

PRConstraint one or both of the following conditions are

satisfied:

a) The requested permission (opk, dj) is not in the set of

permission Px.

b) The intersection between the set of assigned roles to the

user who created the requesting session user(si) and the

set of roles Ry is equal to φ.

5.1 Use Case Demonstration

This section illustrates how to configure HyBACAC to achieve

the same goals of the use case presented in Section 4.1. For

this purpose, HyBACAC will be configured as shown in Fig-

ure 4. We have five users bob, alex, suzanne, john, and

anne. We have two user/session attribute functions, FamilyRole
and FrontDoorLockToken, respectively specify the user re-

lationship to the house’s family and whether the user is au-

thorized to use the front door lock or not. We have five

devices Oven, Fridge, FrontDoorLock, P layStation and

TV . Each device has a set of operations allowed to be per-

formed on it. We have six device attribute functions. The de-

vice attribute function DangerouseKitchenDevices specifies

whether the device is a dangerous kitchen device or not. The

function FrontDoorLockDevice determines if the device is

a front door lock device or not. The device attribute func-

tion EntertainmentDevices specifies if the device is con-

sidered an entertainment device or not. The attribute function

DeviceTemperature captures the temperature of the device.

The device attribute function UsingStatus determines whether

the device is currently in use or not. Finally, the device attribute

function UsingUser specifies who is currently using the device.

Different devices are assigned to different device attribute values.

We have two operation attributes. The operation attribute function

KidsFriendlyContent specifies whether the operation is a

kid friendly operation or not. Moreover, the operation attribute

function DangerouseKitchenOperation specifies whether the

operation is considered a dangerous kitchen operation or not.

Different operations are assigned to different operation attribute

values. The authorization function set Authorization(s : S, op :
OP, d : D, current : ES) is a disjunction of six propositional

statements. The first statement gives parents access to anything

unconditionally. The second statement authorizes teenagers to

use dangerous kitchen operations on dangerous kitchen devices

only when one of the parents is in the kitchen, and the device

temperature is below 150◦. The third statement gives teenagers

access to nondangerous kitchen operations unconditionally. The

fourth statement allows a teenager to use the front door lock

device only if the parent grants him/her the front door lock

token. The fifth statement gives teenagers access to entertainment

devices during a specific time and if another user does not use the

requested device. Finally, the sixth statement permits kids to use

kids friendly operations on entertainment devices during a specific

time and if they are currently not in use by another user.

6 IMPLEMENTATION

In this section, we provide a proof of concept implementation of

HyBACRC and HyBACAC models. The purpose is to validate

the applicability of these models using commercially available

systems. We enforced the use cases presented in Sections 4.1

and 5.1 respectively using AWS (Amazon Web Services) IoT

service [84]. We implemented the smart home IoT architecture

shown in Figure 5, which was first introduced by Geneiatakis

et al. [83]. According to this architecture, the IoT devices are

connected to a central hub and cannot be accessed by users or

other devices directly. Simulations have been used to reflect real

smart home devices. AWS Greengrass [85] was utilized to act

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

12

U = {alex, bob, anne, suzanne, john}, USA = {FamilyRole, FrontDoorLockToken}
FamilyRole : U → {parent, kid, teenager}
FamilyRole(alex) = FamilyRole(suzanne) = kid, FamilyRole(anne) = FamilyRole(john) = teenager, FamilyRole(bob) = parent

FrontDoorLockToken : U → {True, False}. This attribute is a dynamic attribute that is dynamically set by home owner.

D = {Oven, Fridge, FrontDoorLock, TV, P layStation}
OP = OPOven ∪OPFridge ∪OPFrontDoorLock ∪OPP layStation ∪OPTV , where:

OPOven = {Onoven,Offoven, Openoven, Closeoven}, OPFridge = {Openfridge, Closefridge, CheckTemperaturefridge},

OPFrontDoorLock = {LockFrontDoorLock, UnlockFrontDoorLock}, OPP layStation = {OnPS,OffPS}, OPTV = {OnTV ,OffTV , GTV , PGTV , RTV }
ops(Oven) = OPOven, ops(Fridge) = OPFridge, ops(FrontDoorLock) = OPFrontDoorLock, ops(PlayStation) = OPP layStation, ops(TV) = OPTV

DA = {DangerouseKitchenDevices, FrontDoorLockDevice, EntertainmentDevices,DeviceTemperature, UsingStatus, UsingUser}
DangerouseKitchenDevices : D → {True, False}
DangerouseKitchenDevices(Oven) = True, DangerouseKitchenDevices(Fridge) = False. All other values are undefined and evaluated to False

FrontDoorLockDevice : D → {True, False}
FrontDoorLockDevice(FrontDoorLock) = True. All other values are undefined

EntertainmentDevices : D → {True, False}
EntertainmentDevices(TV) = EntertainmentDevices(PlayStation) = True. All other values are undefined and evaluated to False

DeviceTemperature : D → {x|x is an oven temperature}
DeviceTemperature(Oven) is dynamically set by sensors. All other values are undefined

UsingStatus : D → {True, False}
UsingStatus(TV) and UsingStatus(PlayStation) are dynamically set by sensors. All other values are undefined

UsingUser : D → U

UsingUser(TV) and UsingUser(PlayStation) are s dynamically set by sensors. All other values are undefined

OPA = {KidsFriendlyContent,DangerouseKitchenOperation}
KidsFriendlyContent : OP → {True, False}
KidsFriendlyContent(GTV) = KidsFriendlyContent(OnTV) = KidsFriendlyContent(OffTV) = KidsFriendlyContent(OnPS) =
KidsFriendlyContent(OffPS) = True

KidsFriendlyContent(PGTV) = KidsFriendlyContent(RTV) = False. All other values are undefined

DangerouseKitchenOperation : OP → {True, False}
DangerouseKitchenOperation(OnOven) = DangerouseKitchenOperation(OpenOven) = True

DangerouseKitchenOperation(OffOven) = DangerouseKitchenOperation(CloseOven) = DangerouseKitchenOperation(OpenFridge) =
DangerouseKitchenOperation(CloseFridge) = DangerouseKitchenOperation(CheckTemperatureFridge) = False. All other values are undefined

ES = {current}, ESA = {day, time, ParentInKitchen}, day : ES → {S,M, T,W, Th, F, Sa}, time : ES → {x|x is an hour of a day},

ParentInKitchen : ES → {True, False}

R = {kid}, roles(alex) = roles(suzanne) = {kid}, roles(anne) = roles(john) = roles(bob) = ∅
PRConstraints = {({(Oven,OnOven), (Oven,OffOven), (Fridge, OpenFridge), (Fridge, CloseFridge)}, {kid})}

Authorization(s : S, op : OP, d : D, current : ES) ≡
(parent ∈ FamilyRole(s)) ∨
(teenager ∈ FamilyRole(s) ∧ ParentInKitchen(current) ∧DangerouseKitchenDevices(d) ∧DangerouseKitchenOperation(op) ∧

Device Temperature(d) ≤ 150◦) ∨
(teenager ∈ FamilyRole(s) ∧ ¬DangerouseKitchenOperation(op)) ∨
(teenager ∈ FamilyRole(s) ∧ FrontDoorLockDevice(d) ∧ FrontDoorLockToken(s)) ∨
(teenager ∈ FamilyRole(s) ∧ day(current) ∈ {Sa, S} ∧ 17:00 ≤ time(current) ≤ 23:59) ∧ EntertainmentDevices(d) ∧

(¬UsingStatus(d) ∨ UsingUser(d) = user(s)) ∨
(kid ∈ FamilyRole(s) ∧ day(current) ∈ {Sa, S} ∧ 17:00 ≤ time(current) ≤ 19:00) ∧ EntertainmentDevices(d) ∧

KidsFriendlyContent(op) ∧ (¬UsingStatus(d) ∨ UsingUser(d) = user(s))

Fig. 4: HyBACAC Use Case Configuration

Fig. 5: Enforcement Architecture (adapted from [83])

as a smart hub and policy engine. Access is generally divided

into two types: (a) By using the hub’s connectivity services,

users can interact with IoT devices locally, or (b) through cloud

services that communicate with the smart hub to provide remote

access to IoT devices via the Internet. We configured Greengrass’s

lambda function to receive the request, analyze it according to the

configured logic and saved files, and trigger the desired actions on

the corresponding device. In our enforcement, we only handled

local communication.

We first created an AWS account, then configured and de-

ployed Greengrass [85], which serves as a smart hub and a policy

engine. The Greengrass SDK (Software Development Kit) extends

cloud capabilities to the edge (in our case, the edge is the smart

home). It enables devices to process data closer to the source

of information and communicate securely on local networks. We

deployed Greengrass on a dedicated virtual machine with one

virtual CPU and 2 GB of RAM running ubuntu server 18.04.5

LTS. Then, we used AWS IoT device SDK for Python [86]

provided by AWS on different virtual machines to simulate the

users (devices used by users to access the smart things) and the

smart devices (smart things that users want to perform different

operations on them). Finally, we created a virtual object (digital

shadow) for each physical device (users’ devices or smart thing

devices). Digital shadows are virtual counterparts of real physical

IoT devices in the cloud. Shadows maintain the identity and last

known state of the associated IoT device [87]. Each physical de-

vice and its corresponding shadow are cryptographically linked via

digital certificates. MQTT protocol [88] is used by the devices and

users to communicate to the AWS IoT service with TLS security

[89]. MQTT standard is a machine-to-machine (M2M) lightweight

publish/subscribe messaging protocol specially designed for con-

strained devices. Each shadow has a set of predefined MQTT

topics/channels to interact with other IoT devices and applications.

HyBACRC Enforcement We created and configured three JSON

files in the smart hub: (a) UsersRolesAssignment.jason. This

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

13

Fig. 6: The Sequence of Events in Local Communication

defines the assignments of users to different roles. (b) Model-

ComponentConfiguration.json. This file defines and configures

the rest of HyBACRC components to express our use case. (c)

UsersDevicesDynamicAttributes.json to capture different users’

and devices’ dynamic attributes. The process of updating the

values of dynamic attributes in this JSON file is beyond the scope

of this research.

HyBACAC Enforcement Here, we created and configured four

JSON files in the smart hub as follows, UsersAttributes.json,

DevicesAttributes.json, OperationAttributes.json, and Environm-

netAttributes.json, to capture different users attributes, devices at-

tributes, operations attributes, and environment attributes, respec-

tively. The process of updating the values of different attributes in

these JSON files is beyond the scope of this research. The local

communication sequence of actions is illustrated in Figure 6. The

sequence of events illustrated in red and tagged as sequence 1 de-

picts a denied request. On the other hand, The sequence of events

illustrated in green and tagged as sequence 2 depicts an authorized

request. For example, when the user tries to send permission

requests to unlock the front door lock through his mobile phone

while inside the house. First, a request is sent via MQTT protocol

to the virtual object (or local shadow) corresponding to the

user phone in Greengrass through the publish/subscribe relation

between the user’s phone and the local shadow. The local shadow

gets notified of the request and sends it to the lambda function

through MQTT publish/subscribe protocol. The lambda function

analyzes the request according to the model implemented. In the

case of HyBACRC , it analyzes the request according to the User-

sRolesAssignment.json, ModelComponentConfiguration.json, and

UsersDevicesDynamicAttributes.json files and decides whether to

authorize the user to unlock the front door or not. On the other

hand, in the case of HyBACAC , it analyzes the request according

to the content of UsersAttributes.json, DevicesAttributes.json, Op-

erationAttributes.json, and EnvironmnetAttributes.json files and

makes the decision. If the request is denied, the lambda function

publishes to the user’s shadow update topic, and the local shadow

gets notified and updates the user’s phone that the permission was

denied. In this case, the front door lock does not get an indication

that a user attempted to access it. If the request is granted, the

front door lock local shadow is notified through its update topic

and updates the front door lock with the unlock command. After

the front door lock is unlocked, it notifies its shadow by publishing

to the shadow update topic. The front door lock local shadow then

notifies the lambda function, which notifies the user phone’s local

shadow. Finally, the user phone’s local shadow updates the user’s

phone that the TV was turned on successfully.

6.1 Performance Results

We executed multiple test scenarios to check the policy

machine’s response in each case. Furthermore, we analyzed the

performance of our implementation. In particular, we measured

the average lambda function processing time under different

conditions. We implemented the configuration of the same use

case given in Section 4.1, and Section 5.1 for HyBACRC and

HyBACAC models respectively. We analyzed three different cases

with three different loads of requests, each unique load of requests

was executed ten times to measure the average lambda processing

time as follows. (a) When one user is sending requests to multiple

devices at the same time. Table 5 shows the measured average

lambda function processing time in this test case for HyBACRC

and HyBACAC implementation. The first row shows the average

time when the parent, Bob, requests to lock the front door lock.

The second row shows the average time when Bob requests to lock

the front door lock, turn on the TV, and turn on the PlayStation

simultaneously. The third row shows the average time when Bob

requests to lock the front door lock, open the fridge, and turn

on the oven, the TV, and the PlayStation simultaneously. All the

requests were approved as they were supposed to according to our

configured policies. (b) When multiple users are sending requests

to multiple devices simultaneously (one user per device). Table 6

describes the measured average lambda function processing time

in this test case for HyBACRC and HyBACAC implementation.

The first, second, and third rows show the average time when the

parent Bob requests to lock the front door lock, the average time

when Bob requests to lock the front door lock, the kid Suzzane

requests to turn on the oven, and the teenager John requests to open

the fridge at the same time, the average time when the three access

requests tested in the second row are carried again in addition to,

the kid Alex requests to turn on the TV, and the teenager Anne

requests to open the oven while one of the parents is in the kitchen

and the oven temperature is 100◦. The two systems responded

correctly where all the requests were granted except for when

the kid Suzzane was trying to turn on the oven since, according

to our configuration, she is not allowed to, and when Alex was

trying to turn on the TV since the testing was performed during a

weekday, and according to our configuration kids are not allowed

to access TV during weekdays. (c)Finally, Table 7 illustrates the

average lambda function processing time when multiple users are

sending requests to one device at the same time in HyBACRC and

HyBACAC implementation. The first row illustrates the average

time when Bob requested to unlock the front door lock. The

second row shows the average time when Bob, Suzzane, and Alex

simultaneously requested to unlock the front door lock. Finally,

the last row shows the average lambda processing time when Bob,

Suzzane, Alex, John, and Anne all requested to unlock the front

door lock at the same time. The two systems responded correctly,

where all the requests were denied except when Bob requested to

lock the front door lock.

6.1.1 Results Analysis

a. Average Processing Time

From the tables, we can notice that the two models are func-

tional and applicable using commercially available technology.

Furthermore, there is no specific pattern in the average lambda

processing time when the number of requests increases in Table 5,

Table 6, and Table 7. In general, the processing time is short. The

main reason behind that is that in our enforcement, we deployed

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

14

TABLE 5: One User Sending Requests to Multiple Devices

Users Devices HyBACRC L.P.T HyBACAC L.P.T N.R

1 1 1.8343 ms 1.2661 ms 10

1 3 1.7408 ms 1.3118 ms 30

1 5 1.76588 ms 1.3503 ms 50

TABLE 6: Multiple Concurrent Instances of One User Sending

Request to One Device.

Users Devices HyBACRC L.P.T HyBACAC L.P.T N.R

1 1 1.8343 ms 1.2661 ms 10

3 3 1.8385 ms 1.3803 ms 30

5 5 2.01128 ms 1.3247 ms 50

TABLE 7: Multiple Users Sending Requests to One Device

Users Devices HyBACRC L.P.T HyBACAC L.P.T N.R

1 1 1.8343 ms 1.2661 ms 10

3 1 1.73177 ms 1.2818 ms 30

5 1 1.8771 ms 1.2654 ms 50

L.P.T ≡ Lambda function processing time in milliseconds.
N.R ≡ Total number of requests (10 per unique request)

the Greengrass, which serves as a smart hub on a dedicated

virtual machine with one virtual CPU and 2 GB of RAM. This

specification enables it to handle this number of requests without

decreasing performance. However, this may not be the case if the

number of requests increases drastically, which is not typical in a

smart home IoT environment where we have a limited number of

devices and users, unlike the case in other IoT domains.

b. HyBACAC Average Processing Time is Always Less than

HyBACRC Average Processing Time

From the results, we can notice that the lambda average processing

time in HyBACRC is consistently higher than that in HyBACAC .

The main reason is that the HyBACRC CheckAccess predicate

checking process is more complicated than the HyBACAC Check-

Access predicate checking process.

In HyBACRC , if a session si attempts to perform an operation

opk on a device dj when the subset of environment conditions

ECl are active, the CheckAccess predicate checks the following:

1) The requirements of role membership and role activation

specified by the underlying role-based model are satisfied. In

other words, ensure that the requesting user currently active

roles enable him to access at least one of the device roles

that the requested permission is assigned to under the current

active environment roles. This check will evaluate to true if

and only if there is a role pair rpm and a device role drn
assigned to each other through the relation RPDRA such

that the following conditions are true:

a) The device role drn is assigned to the permission (dj , opk)
through the relationship PDRA.

b) The role part of the role pair rpm, which is rpm.r is one

of the currently active roles of the session si.
c) Each environment role in the set of environment roles part

of the role pair rpm, which we refer to by rpm.ER is

active because it is activated by a subset of the currently

active environment conditions ECl.

2) The authorization function, which checks the user’s and

device’s dynamic attributes, is satisfied. In other words, the

user’s current dynamic attributes enable him to access the

requested device with the current dynamic device attribute.

On the other hand, in HyBACAC the CheckAccess predicate

only checks the following:

1) The authorization function ensures that the requesting user is

allowed to access the requested operations on the requested

device according to the current attribute values.

2) The set of permission role constraints PRConstraints,

to ensure that the requested user is not prohibited from

accessing the requested permission by one of the permission

role constraints.

7 THEORETICAL COMPARISON

It is crucial to select an access control model appropriate to

an organization’s structure, requirements, and specifications to

achieve optimal results and minimize access risks and threats. This

section compares four access control models designed to meet

smart home IoT challenges. We compare the hybrid models this

paper developed, HyBACRC , and HyBACAC with EGRBAC and

HABAC. We evaluate these models against access control criteria

adapted from [16] toward this goal. These criteria are grouped into

two categories: (a) basic criteria and (b) quality criteria.

7.1 Basic criteria

This type of criteria consists of six elements. Here we discuss

each criterion.

a. Least privilege principle. All four models support this prin-

ciple. Users who belong to a variety of roles (in EGRBAC, or

HyBACRC) or have different attributes corresponding to their

roles in the house (in HABAC, and HyBACAC) can utilize any

subset of them that will allow tasks to be accomplished.

b. Attributed based specifications. We have two types of at-

tributes, as explained in Section 2, static and dynamic. The

four models support environment attributes. Moreover, they all

support static users, devices, and operations attributes (conditions).

Furthermore, while HABAC, HyBACRC , and HyBACAC models

all support dynamic attributes, EGRBAC does not.

c. Constraints. These are invariants that must be maintained. We

have three types of constraints, static separation of duty, dynamic

separation of duty, and permission-role constraints, as explained

in Section 4, and Section 5. From Table 8, we notice that all four

models support the three types of constraints except for HABAC,

which does not support permission-role constraints [10].

d. Authentication. All four models support positive (close) au-

thentication. The closed policy permits access when there is a

positive authorization for such access and denies it otherwise.

e. Access administration. Here, we compare the four models

based on two administrative tasks. Users and devices provisioning

and configuration effort. In general, the user or device provision-

ing is easier in RBAC-based models (including EGRBAC and

HyBACRC) than in ABAC-based models (including HABAC and

HyBACAC). In RBAC models, users’ and devices’ provisioning

simply requires the administrator (the homeowner) to assign

different roles to the newly created users or devices. On the other

hand, in ABAC-based models, the administrator needs to configure

different attribute values for newly provisioned users or devices.

Regarding configuration effort, from Table 8, we can notice that

HyBACRC requires more configuration effort than the other three

models.

f. Access review. In RBAC based model (including EGRBAC), to

determine the set of permissions available for each user, we just

look into the set of roles assigned to it. Similarly, in HyBACRC ,

by looking into the set of roles assigned to each user, we can

determine the maximum set of permissions available for each

user. However, defining the set of permissions available for each

user could be more complicated in ABAC-based models (such as

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

15

TABLE 8: Evaluating Smart Home IoT Access Control Models Against Basic Criteria

Criteria EGRBAC HABAC HyBACRC HyBACAC

a. Least privilege principle Yes yes yes yes

b. Attributed based specifications

a. Static Yes Yes yes Yes

b. Dynamic No yes yes yes

c. Constraints

a. Static separation of duty Yes Yes yes Yes

b. Dynamic separation of
duty

Yes yes yes yes

c. P-R constraints Yes No yes yes

d. Authentication Positive(Close) Positive(Close) Positive(Close) Positive(Close)

e. Access administration

a. Users and Devices provi-
sioning

Easy Complicated Easy Complicated

c. Configuration effort 1- Define and set initial
users, devices, and opera-
tions static characteristics (
user roles, and device roles)

1- Define and set initial
users, devices, and oper-
ations static and dynamic
characteristics (user roles,
and device roles)

1- Define and set initial
users, devices, and oper-
ations static and dynamic
characteristics (attributes)

1- Define and set initial
users, devices, and oper-
ations static and dynamic
characteristics (attributes)

2- Define environment con-
ditions, environment roles,
and environment activations

2- Define environment
states, and environment
state attributes

2- Define environment con-
ditions, environment roles,
and environment activations

2- Define environment
states, and environment
state attributes

3- Setting up initial role
structure and assignments

3- Specify access policies 3- Setting up initial role
structure and assignments

3- Specify access policies

4- Specify access policies

f. Access review Easy Complicated Easy Complicated

g. Administrative policies Centralized Centralized Centralized Centralized

HABAC and HyBACAC) [14].

g. Administrative policies. To determine how administrative priv-

ileges are organized in any model, an access control administration

model is required. However, in the four models, it is assumed that

the house owner is the one who is responsible for granting or

revoking permissions. Hence, we can say that they all support

centralized administrative policies.

7.2 Quality criteria

As explained in the following, we have three crucial factors.

a. Expressiveness and meaningfulness. Three features are re-

quired for an AC model to be expressive. First, a formal definition

is needed to specify the intended behavior in detail. The second

requirement is that it must be sufficiently meaningful and com-

prehensive enough to support a variety of constraints. Lastly, the

model should include both static and dynamic attributes. All four

models that we are comparing are formally defined. Furthermore,

they all support different constraints except HABAC since it does

not support permission-role constraints. All four models capture

different types of attributes except for EGRBAC, which does not

capture the user’s and device’s dynamic attributes.

b. Flexibility To consider a specific AC model as a flexible model,

several factors need to be assessed. Here we identify three of them.

First, the model should be flexible enough to meet smart home

IoT requirements. Second, the model should support delegation,

which means the capability of a user to delegate his privileges

to any other user partially or totally. Lastly, the flexibility of

provisioning new components. Regarding the first factor and using

the criteria proposed in [15], for an access control model to address

smart home IoT requirements, it should be dynamic, fine-grained,

and suitable for constrained smart home devices. In addition, the

model should be developed specifically for smart home IoT or

interpreted in light of appropriate smart home use cases. The

model should be implemented to be credible using commercially

available technology. Finally, the model should be formalized so

that its intended behavior can be specified precisely. As discussed

in [15] EGRBAC meet this criteria. However, as we discussed

earlier, EGRBAC does not support dynamic attributes. On the

other hand, HABAC, HyBACRC , and HyBACAC are dynamic,

fine-grained, suitable for the constrained home environment, de-

signed specifically for smart home IoT, illustrated with a use case

demonstration, have proof of concept implementation, and they are

formally defined. Hence, they meet the criteria proposed in [15].

Regarding delegation support, this cannot be entirely determined

without an access control administration model. But generally

speaking, it has been shown before that RBAC and ABAC based

models can perform delegation. All four models are capable of

provisioning new users and devices. However, as we explained

in Section 7.1, it is easier to provision new users and devices in

EGRBAC and HyBACRC than in HABAC and HyBACAC .

c. Efficiency level and scalability An access control model is

required to answer two main questions on efficiency and scal-

ability. Is the model can easily be expanded? If not, it will be

unreliable in the real world. Moreover, is the model expansion

affect its efficiency negatively? The answers to these questions

can only be obtained through a more detailed study. However,

generally speaking, we are dealing with a relatively small number

of users and devices in smart home IoT. Moreover, ABAC and

RBAC based models have proved their scalability since they have

been widely adopted in different organizations of enormous sizes.

8 DISCUSSION

As discussed in Section 2 and as many researchers recently

described [9], [10], [11], [12], [13], [14], the need arises for

hybrid models that combine ABAC and RBAC based models

advantages while eliminating their disadvantages to meet access

control requirements in smart IoT systems.

In this paper, we proposed HyBACRC . It is a role-centric

hybrid model that governs users to devices access control. It

is developed based on the EGRBAC model [15], which is a

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

16

role-based access control model developed for smart home IoT

environment. As in HABAC and unlike EGRBAC, HyBACRC can

handle dynamic attributes. As discussed in Section 2, handling

dynamic users’ or devices’ attributes in EGRBAC may result

in role explosion. For example, consider a use case where the

homeowner wants to grant teenagers use of dangerous permissions

in kitchen devices (oven and gas stove), such as opening the oven,

turning on the oven, and turning on the gas stove but only when the

device temperature is below a threshold, say 150◦. This use case

can easily be handled in ABAC models such as HABAC [10] by

defining a dynamic device attribute device temperature, which

measures the device temperature, and then configuring an access

policy that authorizes teenagers to access dangerous permissions

in kitchen devices only if the attribute device temperature is

below 150◦. In EGRBAC, on the other hand, the component

responsible for categorizing permissions of different devices based

on different characteristics is the device roles (DR). Differ-

ent users get access to different permissions by assigning the

users’ roles to the device roles of those permissions. Hence,

we could try to capture this use case in EGRBAC by defin-

ing two device roles: (a) High Temperature Permissions
and assigning to it the permissions that can be performed

when the device temperature is high (which are: close the

oven, turn off the oven, and turn off the gas stove only). (b)

Low Temperature Permissions and assign to it the permis-

sions that can be performed when the device temperature is low

(which is basically all oven and gas stove permissions). However,

when permissions are assigned to a specific device role, they

remain associated with that role until an administration change

is made. Without administrative action, it is impossible to activate

and deactivate permissions assignments to different device roles

dynamically. Suppose that the gas stove temperature is less than

150◦ while the oven temperature is more than 150◦. In this

case, teenagers should get access to all gas stove permissions

assigned to the device role Low Temperature Permissions
while allowed to access only those permissions assigned to

High Temperature Permissions in the oven while pre-

vented from accessing oven permissions assigned to the device

role Low Temperature Permissions. However, there is no

mechanism to deactivate the assignment of the oven permissions

to the device role Low Temperature Permissions when the

oven temperature is above 150◦ and activate it otherwise. Without

such a mechanism, teenagers will access all oven permissions

regardless of the oven’s temperature. Another way to solve this

problem is by creating two device roles for each device, one for

high temperature permissions and another for low temperature

permissions. In our use case, this would require a total of four

device roles (GasStove Low Temperature Permissions,

GasStove High Temperature Permissions, Oven
Low Temperature Permissions, and Oven High
Temperature Permissions). Still, there is no mechanism

to activate and deactivate different device roles dynamically ac-

cording to the different values of the device temperature. Suppose

the gas stove temperature is low while the oven temperature is

high. The model has no mechanism to activate the device roles

GasStove Low Temperature Permissions and Oven
High Temperature Permissions while deactivating the

device roles GasStove High Temperature Permissions
and Oven Low Temperature Permissions. Without such

a mechanism, teenagers will access all gas stove and oven permis-

sions regardless of gas stove and oven temperatures. Moreover,

increasing numbers of devices and dynamic attributes will lead

to role explosion. The problem is further aggravated in other use

cases, which may involve more devices and different dynamic

device attributes with different values. For instance, we may want

to grant access to different permissions based on devices’ different

temperature values, not only on whether the device temperature is

above or below a specific value. In that case, the role explosion

problem will worsen since we may need at least one device role

for each device temperature value. See supplemental material for

more information.

On the other hand, HyBACRC encapsulates relatively static

attributes of access decisions in user roles and device roles while

utilizing the concept of user’s and device’s dynamic attributes to

capture rapidly changing attributes to constrain the permissions

available for each user further. Therefore, the users’ and devices’

role sets determine the maximum set of available permissions,

supporting the principle of least privilege and allowing easy review

of user permissions. On the other hand, the users’ and devices’

dynamic attributes determine a flexible set of permissions for

each user within the scope of his/her assigned roles. Furthermore,

HyBACRC can capture the environment contextual information

through the component environment roles. It retains advantages

of EGRBAC (such as ease of user provisioning, least privilege

principle, and the ability to quickly determine and control the max-

imum permissions available to each user) while capturing different

authorizations for every possible user, environment, operation, and

device dynamic conditions without risking role explosion.

Moreover, in this paper, we introduced HyBACAC . It is

an attribute-centric hybrid model that governs user to device

access control. It is developed based on the HABAC model

[10], which is an attribute-based access control model developed

for smart home IoT environment. HyBACAC captures different

users’, environment’s, operations’, and devices’ static and dy-

namic characteristics. Unlike HABAC, HyBACAC supports the

permission-role constraints by introducing the notion of roles (aka

anti-roles). However, it enforces this type of constraint during

execution time. On the other hand, EGRBAC and HyBACRC

enforce permission-role constraints during configuration time.

HyBACRC and HyBACAC have similar expressiveness power;

they both capture static and dynamic attributes. Moreover, both

can express static separation of duty, dynamic separation of duty,

and permission-role constraints. Both models are formally defined

and illustrated through use case scenarios.

In Section 6, we provide a proof of concept implementation of

HyBACRC and HyBACAC models. The purpose was to verify

the applicability of these models using commercially available

systems. Overall, both models are functional and applicable. How-

ever, as discussed in the same section, while the average lambda

processing time in both models is generally law, the lambda

average processing time in HyBACRC is consistently higher

than that in HyBACAC . The main reason is that the HyBACRC

CheckAccess predicate checking process is more complicated than

that in HyBACAC .

Finally, in Section 7, we compare the two hybrid models de-

veloped in this paper, HyBACRC and HyBACAC with EGRBAC

(an RBAC model specifically designed to meet smart home IoT

challenges) and HABAC (an ABAC model specifically designed

to meet smart home IoT challenges). From our comparison, we can

notice that HyBACRC and HyBACAC are more expressive than

EGRBAC and HABAC. Furthermore, we can notice that while

HyBACAC requires less configuration effort than HyBACRC ,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

17

however, provisioning new users and devices and access review

tasks are more straightforward in HyBACRC .

We acknowledge that practical smart homes will have different

and more complex scenarios, and a detailed performance eval-

uation is ultimately necessary for simulating a large number of

smart things. Nevertheless, our proof of concept implementation

on AWS demonstrates the practical utility and use of fine-grained

security policies within the context of smart homes IoT without the

need to capture a large set of scenarios from the real world since

a scaled setting will not affect the evaluation of security policies.

However, we are considering extending this work to include a

more detailed performance analysis. Since smart home residents

are usually constrained and not willing to deal with complicated

systems, one of the important aspects that need to be considered

in smart home access control models is usability. A user or

homeowners’ related study needs to be performed to define a

common preferable default setting policies. Additionally, a simple,

usable, and expressive user interface need to be developed to

mediate users’ interaction with the access control system. These

are future directions to consider.

9 CONCLUSION

In this paper, we proposed two hybrid models that govern users

to devices access control in smart home IoT HyBACRC and

HyBACAC . HyBACRC is a role-centric hybrid model that is

built on top of the EGRBAC model (an RBAC model developed

specifically to meet smart home IoT requirements). It encapsulates

relatively static attributes of access decisions in user roles and

device roles. It utilizes the concept of user’s and device’s dynamic

attributes to capture rapidly changing attributes to constrain the

permissions available for each user further. HyBACAC is an

attribute-centric model based on the HABAC model (an ABAC

model developed specifically to meet smart home IoT require-

ments). Each model is formally defined and illustrated with a

use case scenario. Moreover, each model is demonstrated with

a proof of concept implementation in Amazon web services

(AWS). Finally, we conducted a theoretical comparison between

HyBACRC , HyBACAC , EGRBAC, and HABAC. We showed

that HyBACRC and HyBACAC meet smart home IoT access

control requirements and have similar expressive power. However,

choosing between them will be a trade-off between considerable

front role structuring effort for ease of administration and access

review in the HyBACRC , on the one hand, and between easy setup

effort but more complicated administration and access review tasks

in the HyBACAC model on the other hand.

10 ACKNOWLEDGMENTS

This work is supported by NSF CREST-PRF Award 2112590 and

NSF CREST Grant HRD1736209.

REFERENCES

[1] F. K. Aldrich, ªSmart homes: past, present and future,º in Inside the

smart home. Springer, 2003.
[2] W. He et al., ªRethinking access control and authentication for the home

internet of things (IoT),º in USENIX Security 18, 2018.
[3] A. Tilley, ªHow a few words to Apple’s Siri unlocked a

man’s front door,º http://www.forbes.com/sites/aarontilley/2016/09/21/
apple-homekit-siri-security, 2016.

[4] K. Hill, ªBaby monitor hack could happen to 40,000 other
foscam users,º https://www.forbes.com/sites/kashmirhill/2013/08/
27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/
613ec55458b5, 2013.

[5] B. Bezawada et al., ªSecuring home IoT environments with attribute-
based access control,º in ABAC’18. ACM, 2018.

[6] S. Bhatt et al., ªAccess control model for AWS internet of things,º in
International Conference on Network and System Security, 2017.

[7] N. Ye et al., ªAn efficient authentication and access control scheme for
perception layer of internet of things,º Applied Math. & Inf. Sciences,
2014.

[8] S. Kaiwen et al., ªAttribute-role-based hybrid access control in the
internet of things,º in APWeb. Springer, 2014.

[9] M. U. Aftab et al., ªA hybrid access control model with dynamic coi
for secure localization of satellite and iot-based vehicles,º IEEE Access,
vol. 8, pp. 24 196±24 208, 2020.

[10] S. Ameer et al., ªThe HABAC model for smart home IoT and comparison
to EGRBAC,º in ACM Workshop on Secure and Trustworthy Cyber-

Physical Systems (SAT-CPS), 2021.

[11] A. Chatterjee et al., ªDynamic role-based access control for decentralized
applications,º in International Conference on Blockchain. Springer,
2020.

[12] D. Gupta et al., ªAccess control model for google cloud IoT,º in
2020 IEEE 6th Intl Conference on Big Data Security on Cloud (Big-

DataSecurity), IEEE Intl Conference on High Performance and Smart

Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and

Security (IDS). IEEE, 2020.

[13] A. Thakare et al., ªPARBAC: Priority-attribute-based rbac model for
Azure IoT cloud,º IEEE Internet of Things Journal, 2020.

[14] D. R. Kuhn et al., ªAdding attributes to role-based access control,º
Computer, 2010.

[15] S. Ameer et al., ªThe EGRBAC model for smart home IoT,º in 2020

IEEE 21st International Conference on Information Reuse and Integra-

tion for Data Science (IRI). IEEE, 2020.

[16] S. M. Hasani et al., ªCriteria specifications for the comparison and
evaluation of access control models,º International Journal of Computer

Network and Information Security, 2013.

[17] M. Alramadhan et al., ªAn overview of access control mechanisms for
internet of things,º in ICCCN. IEEE, 2017.

[18] J. Jindou et al., ªAccess control method for web of things based on role
and sns,º in CIT 2012. IEEE, 2012.

[19] S. Ameer et al., ªAn attribute-based approach toward a secured smart-
home iot access control and a comparison with a role-based approach,º
Information, vol. 13, no. 2, p. 60, 2022.

[20] R. Sandhu, ªRole-based access control,º in Advances in computers, 1998,
vol. 46.

[21] X. Jin et al., ªA unified attribute-based access control model covering
DAC, MAC and RBAC,º in IFIP Annual Conf. on Data and App. Sec.,
2012.

[22] O. Arias et al., ªPrivacy and security in internet of things and wearable
devices,º TMSCS, 2015.

[23] B. Ur et al., ªThe current state of access control for smart devices in
homes,º in HUPS, 2013.

[24] P. M. Chanal et al., ªSecurity and privacy in IoT: A survey,º Wireless

Personal Communications.

[25] T. Denning et al., ªComputer security and the modern home,º Communi-

cations of the ACM, 2013.

[26] A. Cui et al., ªA quantitative analysis of the insecurity of embedded
network devices: results of a wide-area scan,º in ACSAC ’10.

[27] J. Granjal et al., ªSecurity for the internet of things: a survey of existing
protocols and open research issues,º IEEE Comm. Surv.Tuts, 2015.

[28] A. Jain et al., ªSecurity challenges and solutions of IoT ecosystem,º in
Information and communication technology for sustainable development.
Springer, 2020.

[29] T. Oluwafemi et al., ªExperimental security analyses of non-networked
compact fluorescent lamps: A case study of home automation security,º
in LASER 2013, 2013.

[30] M. M. Ogonji et al., ªA survey on privacy and security of internet of
things,º Computer Science Review, 2020.

[31] A. R. Sfar et al., ªA roadmap for security challenges in the internet of
things,º Digital Communications and Networks, 2018.

[32] M. Tabassum et al., ªSmart home beyond the home: A case for
community-based access control,º in Proceedings of the 2020 CHI

Conference on Human Factors in Computing Systems, 2020.

[33] E. Fernandes et al., ªSecurity analysis of emerging smart home applica-
tions,º in SP. IEEE, 2016.

[34] G. Ho et al., ªSmart locks: Lessons for securing commodity internet of
things devices,º in ASIA CCS ’16. ACM, 2016.

[35] E. Fernandes et al., ªFlowfence: Practical data protection for emerging
IoT application frameworks,º in 25th {USENIX} security symposium,
2016.

[36] P. Morgner et al., ªAll your bulbs are belong to us: Investigating the
current state of security in connected lighting systems,º CoRR, 2016.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

18

[37] M. Gupta et al., ªAuthorization framework for secure cloud assisted
connected cars and vehicular internet of things,º in ACM SACMAT, 2018.

[38] A. Ouaddah et al., ªAccess control in the internet of things: Big
challenges and new opportunities,º Comp. NW, vol. 112, 2017.

[39] Y. Zhang et al., ªAccess control in internet of things: A survey,º arXiv

preprint arXiv:1610.01065, 2016.

[40] S. Ravidas et al., ªAccess control in internet-of-things: A survey,º Journal

of Network and Computer Applications, vol. 144, pp. 79±101, 2019.

[41] J. Qiu et al., ªA survey on access control in the age of internet of things,º
IEEE Internet of Things Journal, 2020.

[42] E. Bertin et al., ªAccess control in the internet of things: A survey of
existing approaches and open research questions,º Annals of telecommu-

nications, vol. 74, no. 7, pp. 375±388, 2019.

[43] D. F. Ferraiolo et al., ªProposed NIST standard for role-based access
control,º TISSEC, 2001.

[44] G. Zhang et al., ªAn extended role based access control model for the
internet of things,º in 2010 ICINA. IEEE, 2010.

[45] E. Barka et al., ªSecuring the web of things with role-based access
control,º in C2SI. Springer, 2015.

[46] P. Spiess et al., ªSoa-based integration of the internet of things in
enterprise services,º in ICWS. IEEE Comp. Soc. Press, 2009.

[47] L. M. S. De Souza et al., ªSocrades: A web service based shop floor
integration infrastructure,º in The IoT. Springer, 2008.

[48] J. Liu et al., ªAuthentication and access control in the internet of things,º
in 2012 32nd Int. Con. on Dist. Comp. Sys. Workshops. IEEE, 2012.

[49] B. Ndibanje et al., ªSecurity analysis and improvements of authentication
and access control in the internet of things,º Sensors, vol. 14, no. 8, pp.
14 786±14 805, 2014.

[50] S. Bandara et al., ªAccess control framework for api-enabled devices in
smart buildings,º in APCC. IEEE, 2016.

[51] V. C. Hu et al., ªAttribute-based access control,º Comp., 2015.

[52] A. Mutsvangwa et al., ªSecured access control architecture consideration
for smart grids,º in IEEE PES PowerAfrica, 2016.

[53] Y. Xie et al., ªThree-layers secure access control for cloud-based smart
grids,º in IEEE 82nd VTC2015-Fall. IEEE, 2015.

[54] R. Zhang et al., ªAbsac: attribute-based access control model support-
ing anonymous access for smart cities,º Security and Communication

Networks, vol. 2021, 2021.

[55] M. Gupta et al., ªDynamic groups and attribute-based access control for
next-generation smart cars,º in ACM CODASPY, 2019.

[56] S. Bhatt et al., ªAbac-cc: Attribute-based access control and communi-
cation control for internet of things,º in Proceedings of the 25th ACM

Symposium on Access Control Models and Technologies, 2020.

[57] E. V. H. J. Dennis, ªProgramming semantics for multiprogrammed
computations,º in Comm. of the ACM, 1966.

[58] J. Park et al., ªTowards usage control models: beyond traditional access
control,º in SACMAT ’02. ACM, 2002.

[59] J. Park, ªUsage control: A unified framework for next generation access
control,º Ph.D. dissertation, George Mason University, 2003.

[60] X. Zhang et al., ªFormal model and policy specification of usage control,º
TISSEC, 2005.

[61] Z. Guoping et al., ªThe research of access control based on UCON in the
internet of things,º Journal of Software, 2011.

[62] A. La Marra et al., ªImplementing usage control in internet of things: A
smart home use case,º in 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE,
2017.

[63] F. Martinelli et al., ªToo long, did not enforce: a qualitative hierarchical
risk-aware data usage control model for complex policies in distributed
environments,º in CPSS ’18. ACM, 2018.

[64] A. Ouaddah et al., ªTowards a novel privacy-preserving access control
model based on blockchain technology in IoT,º in Europe and MENA

Coop. Adv. in Inf. and Comm. Tech. Springer, 2017.

[65] O. Novo, ªBlockchain meets IoT: An architecture for scalable access
management in IoT,º IEEE IoT Journal, 2018.

[66] A. Dorri et al., ªBlockchain for iot security and privacy: The case study
of a smart home,º in PerCom workshops. IEEE, 2017.

[67] S. Malani et al., ªCertificate-based anonymous device access control
scheme for iot environment,º IEEE Internet of Things Journal, 2019.

[68] M. J. Covington et al., ªGeneralized role-based access control for
securing future applications,º Georgia Tech, Tech. Rep., 2000.

[69] ÐÐ, ªSecuring context-aware applications using environment roles,º in
SACMAT ’01. ACM, 2001.

[70] H. Yan et al., ªIot-fbac: Function-based access control scheme using
identity-based encryption in iot,º Future Generation Computer Systems,
2019.

[71] M. Alshahrani et al., ªSecure mutual authentication and automated access
control for iot smart home using cumulative keyed-hash chain,º Journal

of information security and applications, 2019.
[72] A. K. Sikder et al., ªMulti-user multi-device-aware access control system

for smart home,º arXiv preprint arXiv:1911.10186, 2019.
[73] G. Goyal et al., ªSecuring smart home iot systems with attribute-based

access control,º in Proceedings of the 2022 ACM Workshop on Secure

and Trustworthy Cyber-Physical Systems, 2022, pp. 37±46.
[74] H. B. Attia et al., ªA new hybrid access control model for security

policies in multimodal applications environments,º J. Univ. Comput. Sci,
vol. 24, pp. 392±416, 2018.

[75] V. Varadharajan et al., ªPolicy based role centric attribute based access
control model policy rc-abac,º in 2015 International Conference on

Computing and Network Communications (CoCoNet). IEEE, 2015, pp.
427±432.

[76] S. Pal et al., ªProtocol-based and hybrid access control for the iot:
Approaches and research opportunities,º Sensors, vol. 21, no. 20, p. 6832,
2021.

[77] J. Park et al., ªActivity control design principles: Next generation access
control for smart and collaborative systems,º IEEE Access, vol. 9, pp.
151 004±151 022, 2021.

[78] T. Mawla et al., ªBluesky: Activity control: A vision forº activeº security
models for smart collaborative systems,º in Proceedings of the 27th ACM

on Symposium on Access Control Models and Technologies, 2022, pp.
207±216.

[79] M. Gupta et al., ªTowards activity-centric access control for smart
collaborative ecosystems,º in Proceedings of the 26th ACM Symposium

on Access Control Models and Technologies, 2021, pp. 155±164.
[80] S. Ameer et al., ªBluesky: Towards convergence of zero trust principles

and score-based authorization for iot enabled smart systems,º in Pro-

ceedings of the 27th ACM on Symposium on Access Control Models and

Technologies, 2022, pp. 235±244.
[81] R. Sandhu et al., ªThe nist model for role-based access control: towards a

unified standard,º in ACM workshop on Role-based access control, 2000.
[82] ªAtomic sentence,º https://en.wikipedia.org/wiki/Atomic sentence.
[83] D. Geneiatakis et al., ªSecurity and privacy issues for an IoT based smart

home,º in 2017 40th MIPRO. IEEE, 2017.
[84] ªAWS-IoT,º https://aws.amazon.com/iot/.
[85] ªAWS IoT Greengrass,º https://docs.aws.amazon.com/greengrass/latest/

developerguide/what-is-gg.html.
[86] ªAWS IoT Device SDK for Python,º https://docs.aws.amazon.com/

greengrass/latest/developerguide/IoT-SDK.html.
[87] ªAWS-shadow,º https://docs.aws.amazon.com/iot/latest/developerguide/

iot-device-shadows.html.
[88] ªMQTT.fx - A JavaFX based MQTT Client,º https://softblade.de/en/

welcome/.
[89] ª The Transport Layer Security (TLS) Protocol,º https://tools.ietf.org/

html/rfc5246.

Safwa Ameer is currently a PostDoc researcher at the Institute for Cyber
Security at the University of Texas at San Antonio. She received her PhD
in Computer Science from the University of Texas at San Antonio. Her
main areas of interest include security and privacy in cyberspace.

James Benson James Benson is a Technology Research Analyst at
the Institute for Cyber Security at the University of Texas at San Antonio.
He holds a master’s in Electrical Engineering focusing on Computer
Science from the University of Texas at San Antonio and a master’s
in Physics from Clarkson University.

Ravi Sandhu is the founding Executive Director of the Institute for Cyber
Security at the University of Texas at San Antonio and Lead PI of its NSF
Center for Security and Privacy Enhanced Cloud Computing, where he
holds the Lutcher Brown Endowed Chair in Cyber Security. He is a
Fellow of the ACM, IEEE, AAAS, and the National Academy of Inventors.
He is an inventor on 31 patents.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3216297

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on January 17,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

