
Reachability Analysis for Attributes
in ABACWith Group Hierarchy

Maanak Gupta ,Member, IEEE, Ravi Sandhu , Fellow, IEEE, Tanjila Mawla, and James Benson

Abstract—Attribute-based access control (ABAC) models are widely used to provide fine-grained and adaptable authorization based

on the attributes of users, resources, and other relevant entities. Hierarchical group and attribute based access control (HGABAC)

model was recently proposed which introduces the novel notion of attribute inheritance through group membership. GURAG was

subsequently proposed to provide an administrative model for user attributes in HGABAC, building upon the ARBAC97 and GURA

administrative models. The GURA model uses administrative roles to manage user attributes. The reachability problem for the GURA

model is to determine what attributes a particular user can acquire, given a predefined set of administrative rules. This problem has

been previously analyzed in the literature. In this article, we study the user attribute reachability problem based on directly assigned

attributes of the user and attributes inherited via group memberships. We first define a restricted form of GURAG, called rGURAG

scheme, as a state transition system with multiple instances having different preconditions and provide reachability analysis for each

of these schemes. In general, we show PSPACE-complete complexity for all rGURAG schemes. We further present polynomial time

algorithms with empirical experimental evaluation to solve special instances of rGURAG schemes under restricted conditions.

Index Terms—Access control, ABAC model, reachability analysis, group hierarchy, attributes inheritance, attributes administration

Ç

1 INTRODUCTION

ATTRIBUTE-BASED access control (ABAC) is considered as
an important authorization system among practitioners

and researchers. The system offers fine-grained and adapt-
able access control solutions based on the characteristics,
referred to as attributes, of several entities. ABAC systems
provide a flexible and scalable approach to secure resources
in distributed environments and overcome some of the
shortcomings of traditional discretionary access control
(DAC)[1], mandatory access control (MAC) [2] and role
based access control (RBAC) [3] models. Several attribute
based access control models have been formulated [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21] but a strong consensus on its definitive char-
acteristics is still to be achieved. More recently, hierarchical
group and attribute based access control model (HGABAC)
[22] was proposed, which introduced the notion of user and
object groups to assign attributes to users and objects
respectively. In this model, besides the direct assignment of
attributes to users or objects, groups are also assigned attrib-
utes, which are then assigned to users and objects through
corresponding group memberships. The most important

advantage of this model is the ease of administration, since
multiple attributes can be assigned or removed from users or
objects through single administrative operation. The admin-
istrative model for HGABAC, referred as GURAG, was
defined in [23], to control user attribute assignment based on
specified precondition rules and administrative roles. This
model has three sub-models user attribute assignment
(UAA), user group attribute assignment (UGAA) and user
to user-group assignment (UGA) which assigns attributes
to users directly or indirectly through groups. The model
extends well-known ARBAC97 [24] administrative model
and recently published GURA administrative model [25] by
introducing administration of attributes for user-groups and
managing user to groupsmemberships.

In ABAC, the attributes of an entity are critical in deter-
mining its permissions. Therefore, it is an important question
to compute the attribute values that an entity can acquire
through the combination of administrative roles and rules. In
the context of GURAG, it is imperative to understand the set
of attribute values a user can get based on direct assignment
or via group memberships. Group hierarchy also exists in the
HGABAC operational model which further complicates com-
putation of the possible effective attribute values of a user.
Although security administrators are trusted to assign attrib-
utes correctly, it is still desirable to understand the eventual
set of attribute values that a user can acquire through multi-
ple direct and indirect assignments. Such analysis can also
help to identify a sequence of administrative actions required
by administrators to assign certain attribute values to the
users. It further allows administrators to know the future
attribute values an entity can achieve based on predefined
administrative rules, which can help them to understand if
certain permissions can ever be granted to an entity.

As the number of attributes, attribute values and admin-
istrative rules become large, certain anomalies become hard

� Maanak Gupta and Tanjila Mawla are with the Department of Computer
Science, Tennessee Tech University, Cookeville, TN 38501 USA.
E-mail: {mgupta, tmawla42}@tntech.edu.

� Ravi Sandhu and James Benson are with the Institute for Cyber Security
and Department of Computer Science, University of Texas at San Antonio,
SanAntonio, TX 78249USA. E-mail: {ravi.sandhu, james.benson}@utsa.edu.

Manuscript received 19 January 2021; revised 24 November 2021; accepted 17
January 2022. Date of publication 25 January 2022; date of current version 16
January 2023.
This work was supported by NSF under Grants HRD-1736209 at UTSA and
2025682 at TTU.
(Corresponding author: Maanak Gupta.)
Digital Object Identifier no. 10.1109/TDSC.2022.3145358

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023 841

1545-5971 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9189-2478
https://orcid.org/0000-0001-9189-2478
https://orcid.org/0000-0001-9189-2478
https://orcid.org/0000-0001-9189-2478
https://orcid.org/0000-0001-9189-2478
https://orcid.org/0000-0002-3165-1813
https://orcid.org/0000-0002-3165-1813
https://orcid.org/0000-0002-3165-1813
https://orcid.org/0000-0002-3165-1813
https://orcid.org/0000-0002-3165-1813
https://orcid.org/0000-0001-7209-2344
https://orcid.org/0000-0001-7209-2344
https://orcid.org/0000-0001-7209-2344
https://orcid.org/0000-0001-7209-2344
https://orcid.org/0000-0001-7209-2344
mailto:mgupta@tntech.edu
mailto:tmawla42@tntech.edu
mailto:ravi.sandhu@utsa.edu
mailto:james.benson@utsa.edu

to detect just by simple inspection. For example, suppose
an administrative user having role RoomAdmin is
allowed to add user attribute roomAcc with value 1.02 to
a user only if the user’s attribute status has value Grad
and the user does not currently have roomAcc 2.01. Fur-
ther, a user can be assigned status attribute with value
Grad only through group G1 membership since there is
no direct assignment administrative rule for status attri-
bute. Another administrative rule assigns roomAcc 2.01 to
a group junior to G1, thereby getting G1 with roomAcc
value 2.01. Now if a user is assigned to user-group G1, she
will get all G1’s attributes, including roomAcc with value
2.01. It might seem that user will not be able to get room-
Acc value 1.02 and 2.01 together. However, it is possible if
the junior group to G1 is assigned value 2.01 after the user
is assigned to user-group G1. Such security policy anoma-
lies can be discovered with the help of reachability analy-
sis, which checks if entities can get certain values together
or whether the entity will get particular values based on
the set of administrative rules defined through adminis-
trative models.

In this paper we analyze the attribute reachability anal-
ysis focusing on the effective attributes of the user
achieved through direct assignment and through user-
group memberships. This work extends the reachability
analysis [26] done for GURA administrative model [25],
where the attributes were only directly assigned to users
without the concept of group memberships. In our analy-
sis, we have defined a restricted GURAG model, called
rGURAG, which considers a subset of preconditions which
can be created in GURAG. We abstract rGURAG into a state
transition system and specify three separate instances—
rGURAG0

, rGURAG1
and rGURAG1þ—to cover different set

of prerequisite conditions for attributes assignments to a
user or a group, and also for user to group membership
assignment. Our reachability analysis primarily focuses on
the effective set of attributes of users which is the union of
direct attributes and attributes attained by group member-
ship. We have defined reachability queries which is the
required set of effective attributes a user can achieve in any
target state. Two different types of reachability queries are
discussed, one with the exact values and another with the
superset of attribute values. We will show that the general
reachability problem for rGURAG schemes is PSPACE-com-
plete. We further identify certain more restricted cases of
rGURAG schemes where the reachability problem can be
solved in polynomial time. For such instances we will pro-
vide algorithms and a sequence of administrative requests
(referred as reachability plan) to satisfy the reachability
query.

The rest of this paper is organized as follows. Section 2
reviews the related work. In Section 3, we review the
HGABAC model and GURAG administrative model. Sec-
tion 4 discusses the generalized restricted rGURAG scheme
and its instances. In Section 5, we formally define our user
attribute reachability problem. Formal proofs for general
rGURAG schemes are discussed in Section 6. Section 7
presents polynomial algorithms for some restricted versions
of rGURAG schemes followed by example problems instan-
ces in Section 8 and experimental results in Section 9. Sec-
tion 10 concludes this paper.

2 RELATED WORK

Reachability analysis for user attributes was first studied by

Jin et al. [26], based on the GURA administrative model [25].

In this analysis, attribute values are assigned to users directly

based on certain attribute-based prerequisite conditions

and by administrators assuming roles. This work proves
PSPACE-complete complexity for generalized GURA scheme

and also presents polynomial algorithms for some conditional

cases. Our work extends the aforementioned reachability

analysis where attributes are assigned to users as well as to

groups towhichusers aremembers. This assignment of attrib-

utes to groups provides administrative benefits in addition

and removal of multiple attributes to users with a single

administrative operation.
Security policies have been widely analysed in several

works including [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37]. The safety analysis problem goes back to 1970’s. In
general, the safety of access control matrix (ACM) model
was shown to be undecidable in [27]. Tripunitara and Li pre-
sented an important theoretical comparison of expressive
powers of different access control models in [28]. Many of
our notations in this paper are adapted from this work. The
same authors in [29] defined restricted forms of ARBAC97
(AATU and AAR) and provided algorithms for analysis
problems including safety and availability in restricted
forms. This work extends results from trust management
policies in [30] where safety and availability security analysis
on delegation of authority is discussed. The schematic pro-
tection model (SPM) [31] introduced typed security entities
where each entity is associated with a security type, which
remains unchanged. Sasturkar et al. [32] analyse ARBAC97
administrative policies to determine reachability and avail-
ability problems, by establishing connections between artifi-
cial intelligence planning problem. Jha et al. [36] classified
analysis problems related to RBAC and claimed PSPACE-
complete solutions for unrestricted classes whereasNP-com-
plete and polynomial time algorithms for restricted sub-
classes. Lipton et al. [34] presented a linear time algorithm
for take and grant system. Alloy language is used for specifi-
cation of role based system and analysis is done using Alloy
constraint analyser in [35]. Recently, Rajkumar and Sandhu
discussed safety problem for pre-authorization sub-model
forUCONABC in [37].

Jajodia et al. [38] presented a logical language to express
positive, negative and derived authorization policies, and
provided polynomial algorithms to check completeness and
consistency. Cholvy and Cuppens [39] discussed the prob-
lem of policy consistency and offered amethodology to solve
it. They further suggested the use of roles priorities to resolve
normative conflicts in policies. [40] provides a method to
transform policy specifications into event calculus based for-
mal notation. It further describes the use of abductive logical
reasoning to perform a priori analysis of various policy spec-
ifications. Jaeger et al. [41] presented the concept of access
control space and its use in managing access control policies.
These spaces are used to represent permission assignment to
subjects or roles. Authors in [42] presented decision diagram
based algorithms to analyze XACML based policies and
compute the semantic differencing information between
versions of policies. Stoller et al. [43] provided algorithms for

842 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

ARBAC97 policies limited to rules with one positive precon-
dition and unconditional role revocations. Same authors in
[44] defined PARBAC (parameterized ARBAC) and deter-
mined user-reachability problem as undecidable over an
infinite types of parameter. It further assumed all parameters
as atomic-valued and are changedwhen the role is modified.
Gupta et al. [45] discussed rule-based administrative model
to control addition and removal of facts (attributes) and
rules. It further proposed an abductive algorithm which can
analyse policies even when the facts (attributes) are unavail-
able based on computation of minimal sets of facts. Thework
in [46] provides analysis of expressive power of generalized
temporal role-based access control (GTRBAC) which offers a
set temporal constraints to specify fine grained time based
policies.

Several works [23], [24], [25], [47] have been presented to
discuss administrative models for well known access control
models. ARBAC97 [24] discusses the user to role assignment
based on the administrative rules comprising of administra-
tive roles and prerequisite conditions based on roles. The
GURAG administrative model [23] provides a generalized
administrative model for attributes based access control
models by asserting role as one of the several user attributes.
These works define attribute based preconditions and
administrative roles to assign and remove attributes from
users and groups. Crampton and Loizou [47] also presented
an administrative work related to RBAC model and devel-
opedmodels for role hierarchy administration.

3 BACKGROUND

In this section, we will provide an overview of reformalized
hierarchical group and attribute based access control (HGA-
BAC) model. We will further discuss the GURAG model
[23] and its three sub models user attribute assignment
(UAA), user-group attribute assignment (UGAA) and user
to user-group assignment (UGA). The main objective of this
section is to lay the foundation of our reachability analysis
and make the reader familiar with relevant terminologies
and concepts.

3.1 HGABAC Model

This subsection discusses the reformalized HGABACmodel
as defined in [23]. We have formulated this model in style of
ABACa [4] to help in our administrative model and reach-
ability analysis. The model is notationally different but
equivalent to HGABAC model provided by Servos et al.
[22]. We begin with an informal overview of the model

followed by formal definitions of components of HGABAC
relevant to our reachability analysis.

3.1.1 Model Overview

Fig. 1 shows the conceptual HGABACmodel. The basic com-
ponents include traditional access control entities like Users
(U), Objects (O), and Subjects (S). A user is a human being
interacting directly with a computer whereas subject is an
active entity (like an application or a process) created by the
user to access resources or objects. A user can create multiple
subjects but each subjectmust belong to a single user. OP rep-
resents the set of operations which can be performed by sub-
jects on objects. The novel approach introduced byHGABAC
model is the notion of user groups (UG) and object groups
(OG), which are a collection of users or objects respectively.
The set of user and object attributes is defined by UA andOA
respectively. Each attribute in set UA and OA is a set-valued
function, which takes different entities, like users, objects,
user-groups or object-groups, and return values from the
attribute range. As the attributes are assigned to groups also,
the prime advantage of this assignment is the inheritance of
attributes to the group’s user or objectmembers. For example,
if a user-group ug with attribute skills having values c and
java, is assigned to user u, then u will inherit attribute skill
with values c and java from ug. Group hierarchy also exists in
HGABAC (defined using a partial relation and shown as self
loops in Fig. 1) where senior groups inherit all the attributes
from their junior groups. For example, suppose a junior
group to ug, say ug0, is assigned value c++ for attribute skill,
then ugwill inherit this value and its effective values for skill
will be c, java and c++. In this case user u already assigned to
user group ugwill get all three values for skill attribute. Similar
assignments can be done for object and object groups also. It
should be noted that each user or object can be assigned to
multiple user or object groups and vice versa. A subject inher-
its all or subset of the effective attributes of the creator user.
Each operation op 2OPwill have an associated boolean autho-
rization function which specifies the policies under which a

Fig. 1. HGABAC conceptual model.

TABLE 1
HGABAC Formal Model (User Attributes Only)

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 843

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

subject is allowed to performoperation op on the objects. These
policies are specified as propositional logic formulas using the
model’s policy language and are defined by the security archi-
tect at the time of system creation. A subject is allowed to per-
form operations on an object if the effective attributes of
subjects and objects satisfy the boolean authorization function.

3.1.2 Formal Definitions (User Attributes Only)

The GURAG administrative model [23] deals with the user
side of HGABAC model reflecting the administrative rela-
tions for users and user groups to modify their attributes.
Similar administrativemodel can also be extended for objects
but is out of the scope of the paper. Our reachability analysis
also considers only the effective attributes of the user, and
therefore, we will only formalize the relevant sets, relations
and functions pertinent to HGABAC and required in our
analysis. Table 1 defines the formal HGABAC model cover-
ing the required definitions. An example configuration with
respect to these definitions is shown in Fig. 2 and Table 2.

Basic sets and relations as shown in Table 1 include U, S
and UG representing the set of users, subjects and user
groups in the system. UA represents the set of user attribute
functions for user and user groups where each attribute
function in UA is set valued. These attribute functions
can assign values to user or user groups from the set of
atomic values, represented as SCOPEatt. The power set of
SCOPEatt is defined by Range(att). Example definitions for
these sets is shown in first part of Table 2. User group hier-
archy (UGH) is a partial order relation on UG, defined as
�ug , where ug1 �ug ug2 represents ug1 is senior to ug2 or ug2
is junior to ug1. As shown in gray the area of Fig. 2, UGH =
fðG1;G1Þ; ðG2;G2Þ; ðG3;G3Þ; ðG1;G2Þ; ðG1;G3Þg. This UGH
relation results in inheritance of attributes from junior to
senior group (will discuss in a moment).

Attribute values can be directly assigned to user and user
groups which is denoted by function att inUA. As defined in
Fig. 2 and Table 2, user Bob is directly assigned {c, java} for
attribute function skills. Similarly, other direct attributes are
given for Bob and user groups G1;G2;G3. The function
directUg specifies the user groups to which the user is directly
assigned. In our example, Bob is directly assigned to user
groupG1. We also define the effective user groups of the user
(denoted by effUg), which states all the groups to which the
user is either directly or indirectly assigned via UGH relation.
Effective user group for Bob will be fG1;G2;G3g, since Bob is
directly assigned toG1 andG1 has junior groups asG2 andG3.

The effective values of an attribute att (effUGatt) for a
user group is the union of the user’s direct attribute values
and the effective values of all its junior groups in UGH rela-
tion. Note that this definition is well formed since �ug is a
partial order. For the minimal groups ugj in this ordering,
we have effUGattðugjÞ = attðugjÞ, giving us base cases for
this recursive definition. For simplicity, we defined e att(ug)
= effUGattðug) for ug 2UG. Therefore, for attribute roomAcc,
effective values for user group G2 is e roomAccðG2Þ = {3.02}.
This value is same as its direct value for roomAcc attribute,
since G2 has no junior group in UGH. For user group G1,
e roomAccðG1Þ = {2.03, 2.04, 3.02} as it inherits values from
G2 and G3. The function effUatt maps the user to the effec-
tive values for attribute att, which is the union of its direct
values and the effective values of att for all its direct groups.
For convenience we defined e att(u) = effUattðu) for user u 2
U and as shown in Table 2, the effective values for attribute
roomAcc for user Bob, written as e roomAccðBobÞ = {1.2,
2.03, 2.04, 3.02} which is the union of its directly assigned
value for roomAcc and values inherited from group G1.
Similarly other effective attributes for user Bob can be calcu-
lated. The prime benefit of HGABAC model, which is easy
assignment of multiple attributes to a user with user group
memberships, is reflected in this function where user u is
assigned multiple attributes with direct group membership
of G1.

Subject s 2 S created by the user u 2 Uwill then assume a
subset of all effective attributes of user u. Similar effective
attributes can be assigned to objects, which is out of scope
of our reachability analysis and is not discussed. Authoriza-
tion policies are pre-defined in the system, using proposi-
tional logic formula, for each operation in OP (set of
operations) by security administrators, which determine if a
subject is allowed to perform operations on objects, based
on their effective attributes.

Note. HGABAC only allows set-valued attributes. ABAC
models generally allow set-valued as well as atomic-valued

Fig. 2. Example user and user group attributes.

TABLE 2
Example Configuration as Defined in Fig. 2

844 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

attributes (for example [4]). Inheritance of values via group
membership for an atomic-valued attribute is problematic
since such attributes can have only one value. Hence, while
the GURA administrative model allows both atomic and set
valued attributes the HGABAC only allows set values.

3.2 GURAG Administrative Model

TheGURAG administrative model [23] was proposed to reg-
ulate the assignment of user attribute values in HGABAC
model via direct user attributes, user-group attributes and
user to groupmemberships. For convenience we understand
the term “assignment of attributes” to mean “assignment of
attribute values.” The model is inspired by ARBAC97 [24]
and GURA [25] administrative models, where administra-
tive roles and current attributes of user and groups or user to
groupmemberships are considered tomake future attributes
or groups assignments. Administrative role hierarchy also
exists in the system where senior administrator roles inherit
permissions from junior roles. The GURAG model has three
sub models (shown in Fig. 1): user attribute assignment
(UAA), user group attribute assignment (UGAA) and user to
group assignment (UGA), which regulates the direct and
effective attributes of users. It should be noted that user
group hierarchy (UGH) is considered fixed in the system
and is not modified. Each of these sub models have different
sets of administrative relations and preconditions definition
using policy language as discussed in following subsections.

The main difference between GURA and GURAG is that
GURAG includes the assignment of attributes to groups and
user to group memberships. Further, the prerequisite condi-
tions specified in GURAG are more expressive, as it also
checks the current effective attributes or effective group
memberships of entities to make future assignments.

3.2.1 Administrative Requests

Definition 1 (Administrative Requests). The attributes and
group memberships of entities are changed by administrative
request made by administrators with certain administrative roles
as defined in Table 3, where AR is the finite set of administrative
roles. The administrative request addðar; u; att; valÞ is made
by administrator with role ar to add value val to attribute att of
user u. Similar administrative requests are used for groups also.
Administrative requests assign and remove are required for man-
aging group memberships. Each administrative request can add
or delete a single attribute value from a user or group.

3.2.2 Administrative Rules

Definition 2 (Administrative Rules). Administrative rules
are tuples in administrative relations which specify conditions
under which administrative requests are authorized. Each of
the three sub-models (UAA, UGAA, UGA) in GURAG model
have administrative relations to define these rules.

The UAA sub-model deals with addition or deletion of
attributes from the user. It has two administrative relations
shown in Table 4, where a rule har; c; vali 2 canAddUatt

authorizes request addðar; u; att; valÞ if user u satisfies pre-
condition c. Similarly, rule har; c; vali 2 canDeleteUatt author-
izes deleteðar; u; att; valÞ requests if user u satisfies
precondition c. In UAA, the precondition c 2 C includes only
current direct and effective attributes of user u. Similar relations
also exist for administering attributes of user groups as discussed
in sub-model UGAA. InUGAA, c 2C involves current direct or
effective attributes of the group whose attributes are modified.

The UGA sub-model has two relations shown in lower part
of Table 4. The rule har; c; ugi 2 canAssign authorizes user to
group assignment request assignðar; u; ug) if user u satisfies
the precondition c. Similarly rule har; c; ugi 2 canRemove

authorizes remove request removeðar; u; ugÞ if user u satis-
fies precondition c. The precondition c 2 C involves both cur-
rent direct or effective attributes and groups of user u.

The expressive power of the GURAG model is primarily
determined by the richness of the policy language used to define
the preconditions C in Table 4. The most general language for
this purpose is defined in [23], similar to the most general lan-
guage of [25] (but without atomic attributes).

Note. In the original GURAG definition [23], the adminis-
trative relations of Table 4 are defined with 2SCOPEatt substi-
tuted for SCOPEatt and 2UG substituted for UG. With the
modification of Table 4 the administrative relations can grow
linearly in the size of SCOPEatt and UG. This does not materi-
ally impact the complexity analysis of the reachability problem.

3.2.3 GURAG Scheme

For purpose of our reachability analysis, we express the
GURAG model according to the notations developed in [28],
following the treatment in [26]. The GURAG scheme is pre-
sented as a state transition system where each state consists
of direct attribute assignments for each attribute of every
user and group, and also each user to groupsmembership. A

TABLE 3
Administrative Requests

TABLE 4
GURAG Administrative Model

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 845

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

transition between states occurs when an authorized admin-
istrative request changes either direct user or group attri-
bute, or changes user to group membership. The general
definition forGURAG scheme is as follows.

Definition 3 (GURAG Scheme). A GURAG scheme is a state
transition system hU, UA, AR, SCOPE, UG, �ug , C, G, di
where,

(i) U, UA, AR, UG, �ug are as defined in Tables 1 and 3.
(ii) SCOPE ¼ hSCOPEatt1 . . . SCOPEattni where atti 2

UA, is the collection of scopes of all attributes.
(iii) C is the collection of all administrative rules in UAA,

UGAA and UGA sub-models.
(iv) G and d are set of states and transition function respec-

tively, defined in following parts of this subsection.

3.2.4 Direct State

G is the finite set of states where each state g 2 G records
directly assigned attributes of each user anduser group, along
with user to groups membership. The direct user attribute
assignment in state g, denoted by UAAg , contains tuples of
the form hu; att; vali for every u 2 U and every att 2 UA such
that attðuÞ ¼ val and val 2 Range(att) in state g. To ensure
uniqueness of user attribute valueswe require the following:

hu; att; val1i 2 UAAg ^ hu; att; val2i 2 UAAg) val1 ¼ val2:

Similarly, direct user group attribute assignment in state g,
denoted by UGAAg , contains tuples of the form hug; att; vali
for every ug 2UG and every att 2UA such that attðugÞ ¼ val
and val 2 RangeðattÞ in state g, with the following unique-
ness requirement:

hug; att; val1i 2 UGAAg ^ hug; att; val2i 2 UGAAg) val1 ¼ val2:

Finally, direct user to group assignment in state g, denoted
UGAg , contains tuples of the form hu; vali for every u 2 U
such that directUgðuÞ ¼ val and val 2 2UG in state g, with
the following uniqueness requirement

hu; val1i 2 UGAg ^ hug; val2i 2 UGAg) val1 ¼ val2:

Note that information in a state can be used to calculate
the effective attributes for user or group and effective user
to groups membership in that state. For convenience we
understand the notation attgðuÞ, attgðugÞ and directUggðuÞ
to denote the values of these functions in state g for u 2 U
and ug 2 UG.

3.2.5 Transition Function

Any change in the direct state records ðUAAg ;UGAAg ;
UGAgÞ will transform the current state to a new state. The
transition function specifies the change from one state to
another in a GURAG system based on current direct or
effective values and administrative requests, as shown in
Table 5. Formally, d : G�REQ ! G, where REQ is the set of
possible administrative requests.

4 RESTRICTED GURAG (rGURAG)

In this section, we introduce a restricted form of GURAG

administrative model, called rGURAG, used in our attribute
reachability analysis. This restricted form allows a subset of
the precondition language defined for GURAG [23], whereby
our analysis also establishes lower bound results on the

TABLE 5
Transition Function

846 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

complexity analysis for richerGURAG model.Wefirst present
a generalized policy language for rGURAG, followed by three
specific instances—rGURAG0

, rGURAG1
, and rGURAG1þ .

The left side of Fig. 3 shows the relation between these
schemes, while the right side shows the rGURA schemes
discussed in [26]. At a high level, rGURAG0

and rGURAG1

add group attributes respectively to rGURA0and rGURA1,
while rGURAG1þ further adds administration of user mem-
bership in groups. Thereby, in rGURAG0

and rGURAG1
the

administrative relations canAssign and canRemove are empty
whereas they are populated in rGURAG1þ . Table 6 provides
example administrative rules for each rGURAG instance, as
will be explained below.

Definition 4 (rGURAG Scheme). The rGURAG scheme uses
the policy grammar below, to specify preconditions C in Table 4

’ ::¼ : ’ j ’ ^ ’ j svalue 2 direct j svalue 2 effective

svalue ::¼ sval1 j sval2 j . . . j svalm;

where SCOPEatt ¼ fsval1; sval2; . . . ; svalmg. The two non-
terminals direct and effective, are individually defined in its
three instances—rGURAG0

, rGURAG1
and rGURAG1þ—in

following subsections.

4.1 The rGURAG0
Scheme

In rGURAG0
scheme, preconditions for rules in canAddUatt

and canDeleteUatt relations only allow the same attribute att
whose value is added or deleted from user. Therefore, condi-
tions for useru have non-terminals direct and effectivedefined

as follows:

direct :: ¼ attðuÞ & effective :: ¼ e attðuÞ:
Similarly, the administrative relations in canAddUGatt and
canDeleteUGatt for user group ug have direct and effective
defined as follows:

direct :: ¼ attðugÞ & effective :: ¼ e attðugÞ:

The examples for rGURAG0
shown in Table 6 conform to

these restrictions. Note that the attribute being updated is
given as the subscript in the Relation column and the condi-
tions in the Pre-requisite Condition column only involve
this attribute.

4.2 The rGURAG1
Scheme

In rGURAG1
scheme, the precondition can include any attri-

bute from the set of attributes. Therefore, conditions in rules
for canAddUatt and canDeleteUatt relations for user u have
direct and effective defined as follows where atti 2 UA

direct :: ¼ attiðuÞ & effective :: ¼ e attiðuÞ:

Similarly, the conditions for user group ug in relations
canAddUGatt and canDeleteUGatt have non-terminals direct
and effective defined as follows:

direct :: ¼ attiðugÞ & effective :: ¼ e attiðugÞ:

The added rules for rGURA1in Table 6 illustrate this, where
the preconditions involve attributes other than the one
being updated. The earlier rules for rGURAG0

continue to
be valid for rGURA1.

4.3 The rGURAG1þ Scheme

The rGURAG1þ scheme allows changes in user groupmember-
ships besidesmodifying the attributes of user and user groups.
Therefore, in addition to the grammar supported by rGURAG1

scheme, rGURAG1þ also includes user’s direct or effective
group memberships as preconditions in rules for canAssign

and canRemove administrative relations. The additional gram-
mar to specify such preconditions is specified below:

’ ::¼ ug 2 directUgðuÞ j ug 2 effUgðuÞ:

Fig. 3. rGURAG (left side) and rGURA (right side) schemes.

TABLE 6
Example Rules in rGURAG0

, rGURAG1
and rGURAG1þ Schemes

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 847

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

In Table 6, rule in canAssign includes effective values for
roomAcc, direct values for college attribute and direct
groups of user u.

5 REACHABILITY PROBLEM DEFINITION

In this section, we provide a formal definition of our attri-
bute reachability problem along with the reachability query
and different query types supported in our analysis. The
general approach is similar to that of [26], except that
atomic-valued attributes are excluded (as noted in Sec-
tion 3.1.2) and reachability is defined with respect to effec-
tive rather than direct attributes (Research in [26] does not
have the notion of effective attributes).

The user attribute reachability analysis problem (or
reachability problem) is based on the effective attributes of
the user. Informally, the problem can be stated as: Given an
initial transition system state with a set of attribute assign-
ments of the user, the user’s group memberships and the
attributes of all the user’s member groups, can administra-
tors with a given set of administrative roles issue one or
more administrative requests, which transition to a target
state having the set of specified effective attributes for that
user? We highlight some simplifications in our reachability
analysis process. First, as the changes made to the attributes
or group memberships of one user do not affect the attrib-
utes or group memberships of another user, our analysis
will only determine the effective attributes of a single user
of interest and hence will only consider attribute assign-
ment of that user, its group memberships and attributes of
these groups. Formally, we assume U = {u} in our analysis
[26]. Second, as the reachability analysis focuses on powers
of a certain set of administrative roles SUBAR � AR, we do
not consider the administrative rules specified for roles out-
side of SUBAR. In other words, we can assume AR =
SUBAR. These simplifications gives our analysis more con-
venient statements without losing generality.

Definition 5 (Reachability Query). A reachability query q 2
Q specifies a subset of effective values of a user for some attrib-
utes in any target state. Formally

q � fhu; e att; vsetiju 2 U; att 2 UA; vset 2 RangeðattÞg:

In the example problems discussed in Section 8, we will use
the following notation to specify our query, which is equivalent
to the notation defined above

q � fe attðuÞ ¼ vsetju 2 U; att 2 UA; vset 2 RangeðattÞg:

For example,
q = fhu; e roomAcc; f2:04gi; hu; e skills; fcgi ,

hu; e college; fCOS;COEgig is equivalent to
q = fe roomAccðuÞ ¼ f2:04g; e skillsðuÞ ¼ fcg;

e collegeðuÞ ¼ fCOS;COEg.
Two types of reachability query are defined in the system. A

query is called “strict” satisfied if every effective attribute
value specified in the query is exactly the same as that in the
target state. A query is called “relaxed” satisfied by the user if
in the target state every effective attribute value of the user is a
superset of the corresponding attribute values specified in the
reachability query. For example, let UA = fskillsg, U = {Bob}

and reachability query q = hBob, e skills, {c, java}i. For strict
query type, q can be satisfied in states g 0 2 G where
e skillsg0 ðuÞ = {c, java}. In relaxed query type, q can be satis-
fied by any state g 00 2 G where e skillsg00 ðuÞ = setval and fc,
javag � setval. For ease of understanding, we represent the
effective value of attribute att for user u in state g 2 G as
e attgðuÞ. The formal definition for reachability query types is
given below:

Definition 6 (ReachabilityQuery Types). For any rGURAG

scheme hU, UA, AR, SCOPE, UG, �ug , C, G, di, we formally
define two Reachability Query Types as:

� RP¼ or strict satisfied queries have the entailment
function ‘RP¼ : G � Q! ftrue, falseg which returns
true (i.e., g ‘RP¼ q) if 8hu, e att, vseti2 q.
e attgðuÞ ¼ vset.

� RP� or relaxed satisfied queries have the entailment
function ‘RP� : G � Q! ftrue, falseg which returns
true (i.e., g ‘RP� q) if 8 hu, e att, vseti2 q. e attgðuÞ
� vset.

It is clear that given a scheme and problem instance, if
RP¼ query problem is satisfied then RP� problem is also
satisfied, but not vice versa. The following two definitions
are same as defined in [26], but we will state them for the
sake of completeness.

Definition 7 (Reachability Plan). A Reachability Plan or
plan is a sequence of authorized administrative requests to tran-
sition from initial state to the target state. For any rGURAG

scheme hU, UA, AR, SCOPE, UG, �ug , C, G, di and states
g0, g

0 2 G, reachability plan is a sequence of authorized requests
h req1, req2, . . . , reqni where reqi 2 REQ ð1 � i � nÞ, to tran-
sition from an initial state g0 to target state g

0 if: g0 !req1 g1 !req2
g2 . . . !

reqn
g 0. The arrow denotes a successful transition from

one state to another due to an administrative request reqi
authorized by rules in C. We write g0 ˆplanC g 0 to abbreviate the
complete plan.

Informally, a reachability problem deals if there exists a
reachability plan to transition from an initial state to some
target state where the effective attribute values of the user
satisfy a particular reachability query. Formally,

Definition 8 (Reachability Problems). Given any rGURAG

scheme hU, UA, AR, SCOPE, UG, �ug ,C, G, di, the attribute
reachability problem is as follows:

� RP¼ or strict reachability problem instance I is of the
form hg0, qi where g0 2 G, q 2 Q and checks if there

exist a reachability plan P such that g0 ˆPC g 0 and g 0

‘RP¼ q.
� RP� or relaxed reachability problem instance I is of the

form hg0, qi where g0 2 G, q 2 Q and checks if there

exist a reachability plan P such that g0 ˆPC g 0 and g 0

‘RP� q.

6 PSPACE-COMPLETE REACHABILITY

In this section, we present our reachability analysis results
for different rGURAG schemes shown in Fig. 3. These results
are extensions to the results from GURA reachability

848 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

analysis [26] and also considers groups for assigning attrib-
utes to its member users. Our analysis will prove that
rGURAG schemes in Fig. 3 in general arePSPACE-complete.
For such schemes we will first show that all rGURAG

schemes are in PSPACE and then reduce a known
PSPACE-complete problem to our problem schemes. In the
next section, we will provide polynomial algorithms for
some restricted rGURAG problem classes.

Lemma 1. Reachability problem for every rGURAG scheme in
Fig. 3 is in PSPACE.

Proof. Each state of a non-deterministic Turing machine
stores some information to predict future states. This
information takes polynomial amount of space and there-
fore all instance are in PSPACE. This proof is similarly
stated for GURA schemes in [26] and more details are
presented in appendix, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputer-
society.org/10.1109/TDSC.2022.3145358. tu
Since all rGURAG schemes are in PSPACE, it will

now be sufficient to prove that all rGURAG schemes are
PSPACE-hard, which will conclude that the schemes are
PSPACE-complete.

Corollary 1. Reachability query types RP� and RP¼ for
rGURAG schemes in general is PSPACE-complete.

Proof. Recall that Fig. 3 defines the relation between differ-
ent rGURAG schemes and rGURA0. The reachability anal-
ysis for rGURA0 scheme discussed in [26] describes the
scheme is PSPACE-complete. This scheme only allows
change in attributes of the user. With respect to rGURAG0

,
it can be said that rGURA0 scheme is a sub-problem with-
out user groups. Therefore, the reduction from known
PSPACE-complete problem (rGURA0) to rGURAG0

is
straightforward, which makes rGURAG0

as PSPACE-
hard. Further, using Lemma 1, it is justified to claim that
rGURAG0

is in PSPACE-complete.
Similar claim can also be made for rGURAG1

scheme
where rGURAG0

is its sub-problem involving only the
same attribute in preconditions for rules (C). Therefore,
rGURAG1

is PSPACE-hard and using Lemma 1, it is also
PSPACE-complete. The analysis for rGURAG1þ is also
alike the above two schemes where rGURAG1

is a sub-
problem of rGURAG1þ , therefore, rGURAG1þ is in
PSPACE-hard and hence PSPACE-complete also. More
details are present in appendix, available in the online
supplemental material. tu

7 POLYNOMIAL REACHABILITY FOR RESTRICTED

CASES

In previous section, we proved that attribute reachability for
any rGURAG scheme in general is PSPACE-complete. How-
ever, we have identified some instances of rGURAG schemes
which can be solved in polynomial time under precondition
restrictions on administrative rules (C). The practicality and
use of these restricted instances are discussed in the example
problem use-case discussed in Section 8. Similar to [26], the
following restrictions are considered where D and SRd are
always imposed together:

� No negation (N): C satisfies N if no administrative
rules inC use negation in preconditions.

� No deletion (D):C satisfies D if for each attribute att 2
UA, canDeleteUatt and canDeleteUGatt are empty. Fur-
ther, canRemove rules are also empty, meaning, attri-
bute values or groups once added cannot be deleted.

� Single rule with direct values (SRd): C satisfies SRd if
for each attribute att 2 UA, there is at most one pre-
condition associated with a particular value assign-
ment in rules of canAddUatt or canAddUGatt. Therefore,
an attribute value pair can either be added through
user directly or through groups but not both. Similar,
condition also exists for canAssign rules. Further, only
direct conjuncts i.e., val 2 attiðuÞ, val 2 attiðugÞ or ug
2 directUg(u) are allowed in prerequisite condition.

These restrictions are important in different kinds of
attributes and scenarios. For instance, No negation (N)
restrictions have significance when attributes like course or
degree are added to entities. It is likely that adding a new
value for course attribute do not require negation of another
course as the precondition. Similarly, No deletion (D) restric-
tion can apply for attributes like skills where a value once
added to any entity will never be deleted. Ideally, an indi-
vidual attaining some skill-set will never loose them. The
SRd restriction allows only unique preconditions in admin-
istrative relations for user and user groups. This restriction
essentially separates set of attributes into two parts, one
which can be assigned only to user directly and others
assigned through groups. For example, attribute like
roomAccess can be assigned through group as it is usually
common to all users with certain characteristics, and if value
changes for one user, it will change for all others too. Attri-
bute like advisor is assigned individually to each user as
change for one user may not change it in others. Therefore,
these restrictions are relevant in applications.

We now discuss reachability analysis for restricted
rGURAG schemes. The notation [rGURAGx, Restriction]
specifies special instances of rGURAG scheme where sub-
script x takes a value in 0, 1 or 1+ representing – rGURAG0

,
rGURAG1

or rGURAG1þ and Restriction represents
combinations of N, D and SRd specifying that administra-
tive rules C in the scheme satisfy these restrictions. For
example, [rGURAG0

– N] denotes rGURAG0
scheme where

rules inC satisfy N.
As shown in Fig. 3, rGURAG1þ scheme is the most

expressive scheme where new attribute values are achieved
by direct assignment to the user or to its effective groups,
and also by changing user to group memberships. It is clear
from the previous discussions that the scheme covers
rGURAG1

and rGURAG0
, which only allow change in attrib-

utes of the user or its effective groups. Therefore, we will
only discuss algorithm for restricted rGURAG1þ scheme
which can be easily used for other two schemes by simply
ignoring irrelevant administrative rules.

7.1 Reachability Plan for RP¼ in [rGURAG1þ–N]

First we will discuss reachability query type RP¼ for
½rGURAG1þ�N	 scheme which can be solved in polynomial
time by Algorithm 1. This algorithm extends the algorithm
discussed for rGURA1 [26] by including user group attri-
bute assignments and also modification in user to group

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 849

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

memberships. The added restriction to this scheme (N)
requires preconditions in rules without negation conjuncts
and therefore, administrative rules cannot specify addition
of new attributes based on the absence of some other val-
ues. Hence, the current attribute values of user or groups
are not required to be removed for adding new values or
group, which precludes the need for investigating any
canDeleteUatt, canDeleteUGatt and canRemove rules.

The algorithm starts with the current set of attribute val-
ues and group memberships for user, and the attribute
values for its member groups. It traverse all relevant
canAddUatt, canAddUGatt or canAssign rules to add new values
to the attributes of user or to its effective user groups and
also add new groups to the user. Since, the query type is
restricted, the algorithm first checks if the current effective
attributes of user are not more than what required in the
query (line 4). If the current values are extra, the algorithm
returns false, since there are no delete administrative rela-
tions to delete such values. The while loop (line 5–24) termi-
nates when either the query is satisfied or when no other
values can be added from the rules in canAddUatt and
canAddUGatt or no new groups can be added to the user
using canAssign rules. When adding a new value to the user
or its effective groups, the corresponding value must be
checked against the query. If the value is present in the
query, the addition is allowed. Similar check is also done to
add new groups the user, where all the attributes present in
the group should also be a part of the query. The order to
add these values or new groups is independent to each

other, since no negation conjuncts are required and pres-
ence of extra values in user or group will not stop from add-
ing new values. Also, if later a new value is added to an
entity, the while loop will again consider the relevant rules
to add values based on the already added values. When a
new attribute is added to user, its effective groups or a new
group is assigned to the user, its corresponding administra-
tive request is appended to the reachability plan plan. If the
query is satisfied, the algorithm returns the corresponding
reachability plan plan or returns false stating that the query
is unsatisfiable and user will not achieve desired effective
attributes as mentioned in query.

Theorem 1. Reachability query type RP¼ for scheme
½rGURAG1þ �N	 is P.

Proof.Algorithm 1 describes the polynomial time algorithm.
Complexity. The complexity is determined by the num-

ber of times the administrative rules in canAddUatt,
canAddUGatt or canAssign are traversed. If only one value
is added by each of the rules, the complexity of Algorithm
1 is OðjcanAssignj � jUGj + ((

P
att2UA jSCOPEattj) � (

jcanAddUattj + jcanAddUGattj � jUGj))), where jcanAddUattj,
jcanAddUGattj and jcanAssignj represents number of the
administrative rules in these relations and jUGj represents
the maximum number of groups assigned to the user.
Clearly, the complexity of algorithm is polynomial. tu
The RP� query type for ½rGURAG1þ �N	 also has a poly-

nomial algorithm, where the extra conditions to check the

Algorithm 1. Plan Generation for RP¼ in [rGURAG1þ– N]

1: Input: problem instance I = hg0, qiOutput: plan or false
2: plan := hi; "Initialize plan

3: s := g0; "Initialize with state s

4: if (9 att 2 UA 9 hu, e att, vseti 2 q). e attðuÞ � vset 6¼ ; then
return false; "Check if state s has more values than query

" Assign attribute values required in query to the user or its effective groups

5: while (s 0RP¼ q ^
6: ((9 att0 := att 2 UA 9 rule := har; c; vali 2 canAddUatt0).

(Satisfyuðu; c; sÞ ^ val =2 att0ðu) ^ 9 hu, e att0, vseti 2 q. val 2 vset))
7: _
8: ((9 att0 := att 2 UA 9 rule := har; c; vali 2 canAddUGatt0). (9 ug0 := ug 2 effUgðuÞ. Satisfyugðug0; c; sÞ ^ val =2 att0ðug0) ^
9: 9 hu, e att0, vseti 2 q. val 2 vset))
10: _
11: ((9 ug00 := ug 2 UG 9 rule := har; c; ug00i 2 canAssign).

(Satisfyu�ugðu; c; sÞ ^ ug00 =2 directUgðuÞ ^
12: 8 att 2 UA 9hu, e att, vseti 2 q. e attðug00Þ � vset))) do
13: s := s
 rule; "apply rule on state s

14: switch "append administrative request to plan

15: case rule 2 canAddUatt0 :
16: plan := plan:appendðaddðar; u; att0; valÞ);
17: break;
18: case rule 2 canAddUGatt0 :
19: plan := plan:appendðaddðar; ug0; att0; valÞ);
20: break;
21: case rule 2 canAssign:
22: plan := plan:appendðassignðar; u; ug00Þ);
23: break;
24: end while
25: if s ‘RP¼ q then return plan else return false end if "check if reachability query is satisfied

850 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

query before adding new values is removed since we can
have values even if they are not required in the query. The
complexity will remain the same as shown in Theorem 1.
Similar algorithm can also be devised for RP¼ and RP�
query type in ½rGURAG1

�N	 and ½rGURAG0
�N	 schemes

where canAssign rules will not be considered into the while
loop for adding new groups to the user. Hence these schemes
can be also solved in polynomial time.

7.2 Reachability Plan for RP¼ in [rGURAG1þ–D;SRd]

We will now consider another restricted instance for
rGURAG1þ , ½rGURAG1þ �D; SRd	 which can be solved by
Algorithms 2 and 3. The scheme has two restrictions, D
which removes the need to consider delete administrative
relations – canDeleteUatt, canDeleteUGatt and canRemove. The
SRd restriction allows single preconditions for each attribute
value pair or user group, with only direct values as con-
juncts in preconditions. This restriction results in rules
which can be either satisfied by user or any of its effective
groups but not both. We have divided the algorithm into
two algorithm for ease of understanding and to show how
these algorithms can be reused in other schemes also.

Algorithm 2 is used to add new groups to the user. Since
the preconditions only involves user’s direct groups as con-
juncts (SRd restriction), the addition of groups is indepen-
dent of the attributes and can be calculated separately. The
administrative rules in this scheme can have negation con-
juncts in preconditions, therefore, the order of assigning
new groups can be mutually dependent. The algorithm first
creates a directed graph where vertices Vug are user groups
and edges Eug are directed based on conjuncts in precondi-
tion of rules in canAssign. In line 3, before adding a group to
Vug, it is checked that all the attributes in group are required
in query, as no extra attributes are allowed in RP¼ and dele-
tion is not allowed. Line 4 – 8 creates edges in the graph, if a
user group ug1 is a negation conjunct to add another group
ug2 or ug2 is a precondition for ug1, then edge is drawn from
ug2 to ug1, signifying that ug2 should be added before ug1. If
cycles exists in the created graph then remove the cyclic paths
and create topological sort on the remaining graph. The set of
administrative requests based on the sort will provide the

planug for user to groups assignment. Once the requests are
executed in order, new effective groups are calculated for the
user and computation continues fromAlgorithm 3.

Algorithm 3 extends algorithm defined in [26], which
checks the final set of values required to satisfy the reach-
ability query and find canAddUatt or canAddUGatt rules to add
those values. Further to add the values in precondition of
rules, it may in-turn need some other rules and values and
so on. Therefore, algorithm traverses backward to find the
set of values required to satisfy the query. Since the values
can be achieved by user directly or from any of its effective
groups, this backward search is done for user and all its
effective groups as calculated by Algorithm 2.

The algorithm starts by checking if the query is satisfied
in the current state, in that case empty plan is returned sig-
nifying that with only new group assignments query is sat-
isfied. Otherwise, it creates a set of attribute value pair for
values required in query q and also for current attributes of
user and its effective groups (line 4-5). Line 6 checks if the
union of current values of the user or its effective groups is
not more than values required in q. If extra values are there,
the algorithm returns false, as no delete rules are allowed. The
algorithm calculates all positive precondition attribute value
pairs required by user or its effective groups to get values in
toadd (line 7-17). Therefore, the final set of values required
includes the values in query (toadd) and positive precondi-
tions in user or its effective groups excluding their current val-
ues. Line 18 checks if rules exists to add all required attribute
value pair or else returns false, as the values can not be added.
Line 19-21 calculate negative conjuncts in rules required to
add required values and returns false if the such values are
present in current state. After passing through all checks, the
algorithm starts creating a directed graph. Vertices (V) in the
graph are attribute value pair of the values required in the
query q and the required positive preconditions excluding the
values in the current state. EdgesEwill be drawn in the direc-
tion defined in the for loop (line 23-30). If the attribute value
pair ðatt1; val1Þ is in the negative conjunct in administrative
rule for ðatt2; val2Þ or ðatt2; val2Þ is a positive conjunct in a rule
to add ðatt1; val1Þ, the edge is created from ðatt2; val2Þ to
ðatt1; val1Þ. Since our query type is RP¼, it requires an addi-
tional check so that no extra values are added to the user.

Algorithm 2. Group Assignment Plan Generation for RP¼ in [rGURAG1þ– D, SRd]

1: Input: problem instance I = hg0, qiOutput: planug

2: if g0 ‘RP¼ q then return planug := hi; "Check initial

state

3: Gug :¼ hVug; Eugi; Vug := {ug j 9 ug 2 UG. 9 ug =2 directUgðuÞ. 9 har; c; ugi 2 canAssignðuÞ. 8 att 2 UA 9hu, e att, vseti 2 q. e attðugÞ
� vset }; Eug := ;; "Construct a directed graph

4: for each pair of nodes (ðug1; ug2Þ 2 VugÞ do
5: if ((9har; c; ug2i 2 canAssign. “ðug1 2 directUgðuÞÞ”

is a conjunct in c) _
6: (9har; c; ug1i 2canAssign. “:ðug2 2 directUgðuÞÞ”

is a conjunct in c))
7: then Eug := Eug [fhug1; ug2ig; end if "Add edges

8: end for
9: if graph Gug has cycles then remove the cyclic paths and

planug := sequence of assign requests corresponding to the
topological sort of Gug;

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 851

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

Therefore, once the graph is created, we create a set valset,
which includes values required in query and not present in
the current state. If the created graph has vertex in valset hav-
ing incoming edge not fromvertex in valset, algorithm returns

false (line 32). Otherwise it removes all the edges fromvertices
not in valset. If cycles exists in the remaining graph then algo-
rithm returns false, else the set of administrative request cor-
responding to the topological sort will return the plan.

Algorithm 3. Plan Generation for RP¼ in [rGURAG1
– D, SRd]

1: Input: problem instance I = hg0, qiOutput: plan or false
2: if g0 ‘RP¼ q then return plan := hi; "Check initial

state

3: toadd := {(att, val) j att 2 UA, hu, e att, vseti 2 q, val 2 vset } "Values required in query

4: curu := {(att, val) j att 2 UA, val 2 attðuÞ} "Current

values of user

5: for each ug 2 effUgðu) do curug := {(att, val) j att 2 UA, val 2
attðugÞ} end for "Current values of user’s effective groups

6: if (curu [ð S ug 2 effUgðuÞcurugÞÞ � toadd 6¼ ; then return
false; "Check if state g0 has more values than query

7: ppreu := ;; for each ug 2 effUgðuÞ do ppreug := ;; end for
8: for (each ðatt; valÞ 2 toadd [ppreu) do "Positive precondition values for user

9: ppre0u := {ðatt1; val1Þ j 9 har; c; vali 2 canAddUatt.
“val1 2 att1ðuÞ” is a conjunct in c};

10: ppreu := (ppreu [(ppre0u n ppreu)) n curu;
11: end for
12: for (each ug 2 effUgðuÞ) do "Positive precondition values for effective groups

13: for (each ðatt; valÞ 2 toadd [ppreug) do
14: ppre0ug := {ðatt1; val1Þ j 9 har; c; vali 2 canAddUGatt.

“val1 2 att1ðugÞ” is a conjunct in c};
15: ppreug := (ppreug [(ppre0ug n ppreug)) n curug;
16: end for
17: end for

" Check if rules exists for values required

18: if ((9ðatt; valÞ 2 toadd [ppreu [ð S ug 2 effUgðuÞppreugÞ n
(curu [ð S ug 2 effUgðuÞcurugÞÞÞ. @ har; c; vali 2 canAddUatt [
canAddUGatt)then return false;
" Find negation values in rules required to add values for the user and its effective groups

19: npreu := {(att1, val1) j 9 ðatt; valÞ 2 (toadd [ppreu) n curu. 9 har; c; vali 2 canAddUatt. “:ðval1 2 att1ðuÞÞ” is a conjunct in c}
20: for each ug 2 effUgðuÞ do npreug := {(att1, val1) j 9 ðatt; valÞ 2 (toadd [ppreug) n curug . 9 har; c; vali 2 canAddUGatt.

“:ðval1 2 att1ðugÞÞ” is a conjunct in c} end for
21: if ((npreu \ curu 6¼ ;) _ (8 ug 2 effUg(u). npreug \ curug 6¼ ;)) then return false; "Negation in current values

22: G :¼ hV;Ei; V := toadd [ppreu [ð S ug 2 effUgðuÞppreugÞ n
(curu [ð S ug 2 effUgðuÞcurugÞÞ; E := ;; "Construct a directed graph

23: for each pair of nodes (ðatt1; val1Þ; ðatt2; val2Þ) 2 V do
24: if (((9har; c; val2i 2 canAddUatt2 . “ðval1 2 att1ðuÞÞ”

is a conjunct in c) _
25: (9har; c; val1i 2canAddUatt1 . “:ðval2 2 att2ðuÞÞ”

is a conjunct in c))
26: _
27: ((9 ug 2 effUgðuÞ). ((9har; c; val2i 2 canAddUGatt2 .

“ðval1 2 att1ðugÞÞ” is a conjunct in c) _
28: (9har; c; val1i 2 canAddUGatt1 . “:ðval2 2 att2ðugÞÞ”

is a conjunct in c))))
29: then E :¼ E [{hðatt1; val1Þ; ðatt2; val2Þi};

end if "Add edges to the graph

30: end for
31: valset := toadd � (curu [ð S ug 2 effUgðuÞcurugÞ); "Values in query not in state g

32: if 9ðatt1; val1Þ 2 valset 9hðatt; valÞ; ðatt1; val1Þi 2 E.
ðatt; valÞ =2 valset then return false

33: else V :¼ vset E :¼ E � fhðatt; valÞ; ðatt1; val1Þi j ðatt; valÞ
=2 vset, ðatt1; val1Þ =2 valset} end if

34: if graph G has a cycle then return false else return plan := sequence of administrative requests corresponding to the topologi-
cal sort of G;

852 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

Therefore, the overall reachability plan returned will be
planug from Algorithm 2 and plan from Algorithm 3.

Theorem 2. Reachability query type RP¼ for scheme
½rGURAG1þ�D; SRd	 is P.

Proof. Algorithms 2 and 3 describe the polynomial
algorithms.

Complexity. The algorithm takes polynomial time to
create directed graphs and then to compute topologi-
cal sort. Its complexity is OðjUGj � jcanAssignj +
((
P

att2UA jSCOPEattj) � (jcanAddUattj + jcanAddUGattj �
jUGj))). tu
In case of RP� query type for ½rGURAG1þ�D; SRd	, we

remove the extra checks to verify if no extra values are pres-
ent in current state (line 6). Further line 31-33 is not required
as extra values are allowed to be added to user. With
these minor changes, the complexity of RP� for scheme
½rGURAG1þ�D; SRd	 is P.

It should be noted that RP¼ for ½rGURAG1
�D; SRd	 do not

allow changes in groupmemberships of user. Therefore, com-
putation for this scheme will start directly from Algorithm 3,
obviating the execution of Algorithm 2. The RP� query for
½rGURAG1

�D; SRd	 will remove all extra conditions applied
in Algorithm 3 for RP� scheme for ½rGURAG1þ�D; SRd	 as
discussed above. Also, since rGURAG0

is a sub-problem of
rGURAG1

we can conjecture that RP¼ and RP� for scheme
½rGURAG0

�D; SRd	 can be solved in polynomial time.

8 EXAMPLE PROBLEM INSTANCE

We will now illustrate the plan generation in two schemes
discussed earlier with a sample input state and a set of
reachability queries. Fig. 4 defines the common input for
both the schemes.

Plan Generation for RP¼ in [rGURAG1þ– N]. Fig. 5 shows
attributes of user and groups along with user to group

direct membership. Table 7 defines set of administrative
rules allowed in scheme along with two reachability
queries. We will first try to find a reachability plan (if exists)
for query q1 using Algorithm 1.

Initially, plan is set to empty hi. The initial state is
checked to find if it has more attribute values than required
in query q1. In state g0, the effective values of user are
e_roomAcc(u) = {2.04, 2.03, 3.02}, e_skills(u) = {c, c++},
e_college(u) = {COS}, which are all required in query. The
while loop checks if query q1 is satisfied in state g0, which
is not true as some values are missing. Now algorithm
starts adding new values to the user or its effective
groups and also assign new groups to user based on
administrative rules defined in Table 7. The first rule
requires effective skills of user having value c++ and
roomAcc attribute with value 2.04. to add 1.2 value to
roomAcc by administrative role BuildAdmin. Since user
satisfy these conditions and 1.2 value is not directly
assigned in roomAcc(u) and the value is required in q1, it
adds 1.2 value to roomAcc(u). The administrative request
add(BuildAdmin, u, roomAcc, 1.2) is also appended to the
plan. The algorithm again goes through the while loop and
checks if q1 is satisfied. The user is still missing skills attribute
value python. The algorithm now tries to add groupG3 to user
u. The precondition of canAssign rule is satisfied by user, but
the effective values for roomAcc attribute for group G3 are
{3.05, 2.04}, which is not the subset of values required in query.
Hence, G3 cannot be assigned to user u. Next, the algorithm
checks rule for skills attribute to add value python and finds
that preconditions to add value python are satisfied by user u.
It appends the corresponding request add(DeptAdmin, u,
skills, python) to plan which results in total of two requests in
the plan. The algorithm again checks the new state against q1
and finds the query is “strict” satisfied. It breaks the while
loop and returns plan = add(BuildAdmin, u, roomAcc, 1.2),
add(DeptAdmin, u, skills, python).

TABLE 7
Example Problem Instance for RP¼ in [rGURAG1þ– N]

Fig. 4. Input starting state (g0 2 G).
Fig. 5. Initial state for RP¼ in [rGURAG1þ– N].

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 853

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

We now check the satisfiability of query q2 with the
same initial state. Similar to q1, query is checked against
initial state to check extra values and value 1.2 for attri-
bute roomAcc is added to the user and requests is
appended to the plan. Second rule allows to add COE for
attribute college, but the preconditions are not satisfied
by user. We try to add group G3 but it also adds extra
values which are not required in query. It can be noticed
that after all the administrative rules are checked, the
query cannot be satisfied and hence the algorithm returns
false.

Plan Generation for RP¼ in [rGURAG1þ– D, SRd]. Fig. 6
shows user and group attributes along with user to
group direct membership. Table 8 defines the set of
administrative rules allowed in the scheme and three
reachability queries. It should be noted that the rules in
C have negation conjuncts and single precondition with
direct attributes or group memberships for each attribute
value pair or user group. We will start with Algorithm 2
to assign new groups to the user. Once groups are
assigned, attributes will be added to user or its newly
computed effective groups. If Algorithm 2 doesn’t add
new groups, the computation will still be done by Algo-
rithm 3 with old effective groups.

Algorithm 2 creates group assignment plan (defined as
planug) to assign new groups to user. Two administrative
rules exists in canAssign relation. Since G3 is not directly
assigned to user u, precondition is satisfied and G3 has value
python for skill attribute, which is required in query q1, algo-
rithm adds G3 to the set of vertices Vug. Similarly group G5 is
also added to Vug. There are no more canAssign rules, hence
the algorithm starts adding edges to the graph. For (G3, G5) 2
Vug, since G3 is a negation conjunct in precondition to add G5,
therefore, directed edge is drawn from G5 to G3. As there are
no other relevant canAssign rules and vertices pair, it breaks

the loop and creates a topological sort of the graph. Sort
will have {G5, G3} order and the corresponding plan planug

:= assignðDeptAdmin; u; G5Þ, assignðDeptAdmin; u; G3Þ is
returned. Before proceeding to Algorithm 3, the request in
planug must be executed to get new effective groups of the
user. Algorithm 3 is used to assign attributes to user and
newly computed effective groups (which will now have
group G5 and G3 along with G1 and G2). It first checks if
the query (q1) is satisfied in the current state (line 2) which
has new direct groups assigned using algorithm 2. Clearly
query q1 is satisfied with new group assignments only,
hence the reachability plan for group assignments planug is
returned.

For queries q2 and q3, group assignment plan planug is
created similarly as above. Therefore, we will follow Algo-
rithm 3 with user’s effective groups as G1, G2, G3 and G5.
For q2, current state do not have value 1.2 for roomAcc attri-
bute. The algorithm first computes toadd, which is the set of
attribute value pair in q2

toadd ¼fhroomAcc; 2:04i ; hroomAcc; 2:03i;
hroomAcc; 3:02i ; hroomAcc; 1:2i;
hskills; ci; hskills; cþþi; hskills; pythoni;
hcollege; COSi; hcollege; COEig:

It then calculates the current attribute value pair for user
and its effective groups (Line 4-5)

curu ¼ fhroomAcc; 2:04i ; hskills; ci; hskills; cþþi;
hcollege; COSig

curG1
¼ fhroomAcc; 2:03ig curG2

¼ fhroomAcc; 3:02ig
curG3

¼ fhroomAcc; 2:04i ; hskills; pythonig
curG5

¼ fhcollege; COEig:

The algorithm checks if the current attributes of user and its
effective groups are not extra than the values required in
the query. Clearly, for query q2, no extra values are present
in current state. The algorithm next computes the positive
conjuncts in the preconditions required to add the values in
toadd. It first calculates for each attribute value pair in toadd
and then recalculates for each positive preconditions attri-
bute value pair also. For example, positive conjunct for user
to add hroomAcc; 1:2i in toadd is hskills; cþþi and for
hskills; pythoni in toadd is hskills; ci. Therefore (using line

TABLE 8
Example Problem Instance for RP¼ in [rGURAG1þ– D, SRd]

Fig. 6. Initial state for RP¼ in [rGURAG1þ– D, SRd].

854 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

9), ppre0u := {hskills; cþþi, hskills; ci}. It then recomputes
ppreu by combining its values with newly computed ppre0u
after removing values already present in ppreu or curu. In
this case, no new value is added in ppreu, as both the values
in ppre0u are already present in curu. Similarly, the positive
preconditions are calculated for each effective groups

ppreu ¼ fg; ppreG1
¼ ppreG2

¼ ppreG5
¼ fhskills; pythonig

ppreG3
¼ fg:

Next, in line 18, the algorithm checks if rules exists for val-
ues required in toadd and positive preconditions excluding
the current values. Clearly, rule exists for hroomAcc; 1:2i pair
and all other values are already present in user or its effective
groups. It then calculates negative conjuncts for user and its
effective groups in preconditions to add values in toadd and
positive preconditions excluding current state. For user,
hroomAcc; 1:2i has negation conjunct hroomAcc; 2:04i
in canAddUroomAcc. Remaining negation conjuncts are
as follows:

npreu ¼ fhroomAcc; 2:04ig
npreG1

¼ npreG2
¼ npreG3

¼ fhroomAcc; 2:04ig
npreG5

¼ fg:

Line 21 checks if the negation conjuncts exists in current val-
ues of either user or its effective groups. User has
fhroomAcc; 2:04ig pair in curu, therefore, roomAcc attribute
cannot get value 1.2 required in q2 since only single rule
exists for user or groups. Hence, the algorithm returns false
for query q2. For query q3, toadd values are

toadd ¼fhroomAcc; 2:04i ; hroomAcc; 2:03i;
hroomAcc; 3:02i ; hskills; ci; hskills; cþþi;
hskills; pythoni; hskills; matlabi
hcollege; COSi; hcollege; COEi; hcollege; BUSig:

The current values are still the same as defined in query q2.
The algorithm calculates the positive conjuncts in precondi-
tions as

ppreu ¼ fhskills; matlabig
ppreG1

¼ ppreG2
¼ ppreG5

¼ fhskills; pythonig
ppreG3

¼ fg:

The negation conjuncts are calculated as

npreu ¼ fg; npreG1
¼ npreG2

¼ npreG3
¼ fhroomAcc; 2:04ig

npreG5
¼ fg:

These negation values are not present in user or all of its
effective groups. Therefore, the algorithm creates directed
graph (line 22-30) with vertices V := fhskills; matlabig,
fhcollege; BUSig. Edge in E is drawn from fhskills;matlabig
to fhcollege; BUSig as fhskills; matlabig is a precondition
conjunct in rule to add fhcollege; BUSig. Line 31 calcu-
lates valset which in this case is same as V . Since no
cycle exists in the graph, topological sort is created. The
final reachability plan to satisfy the query q3 is plan :=
assignðDeptAdmin; u; G5Þ, assignðDeptAdmin; u; G3Þ, add

(DeptAdmin, u, skills, matlab), add(BuildAdmin, u, college,

BUS). The administrative requests must be executed as
ordered in the reachability plan.

9 EXPERIMENTAL RESULTS

This section describes the performance evaluation on Algo-
rithms 1, 2 and 3 (discussed in Section 7) after varying num-
ber of parameters and shows the analysis of the results
drawn from these experiments. We measure the time it
takes for a successful reachability plan to generate under
different rGURAG instances once a query is requested. We
implemented the algorithms in Python using PyCharm.1

We generated a random pool of attributes and their val-
ues for user and groups in the system. The initial state
of the system is assigned a user, set of groups, adminis-
trative rules allowed in different schemes, group hierar-
chy, scope of attributes etc. where all are generated
randomly. Reachability query and administrative rules
are also randomly generated based on the attributes in

Fig. 7. Performance of Algorithm 1 with different parameters.

1. https://www.jetbrains.com/pycharm/

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 855

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

initial state (we do not want to have the query be satis-
fied in the initial state itself). There are several dynamic
parameters which we changed to scale the algorithms:
attr denotes the number of attributes, scope represents
the size of the range for values of attributes. ppre and
npre represent the number of positive and negative con-
juncts in a rule precondition respectively. d represents
the total number of desired attribute and value pairs
specified in the reachability query which are not already
available in the initial state. For example, assume in ini-
tial state, ATTR = {College, Skill} and U = {Bob}. In the
initial state, College(Bob) = {COS} and Skill(Bob) = {c,
Python}. If the query requires, College(Bob) = {COS,
COR} and Skill(Bob) = {c, Python, c++, matlab}, then the
value of d would be 3 as the number of attribute and
value pairs that are absent in the initial state is 3. g denotes
the number of user groups in the system. We generated
administrative rules based on the values in d. Roughly half of
the number of items in the query (for example, with d = 30 for
Algorithm 1 results in Fig. 7a) would be for canAddUA and
the other half canAddUGA and a couple for canAssign. These
numbers are approximate since the input and query state-
ments are randomly generated. Therefore, the rules which are
based off of thosemay vary aswell.We vary all these parame-
ters in Algorithms performance evaluation under different
combinations as explained below. Each data reported is an
average over 500 instances generated using the same parame-
ter values. Plan generation execution time was measured on
AppleMacBook Prowith aM1 processorwith 16GB of RAM.

Results for Algorithm 1. The evaluation results are in
Figs. 7a, 7b and 7c. We vary different parameters except
npre in Algorithm 1 which denotes the number of negations
in preconditions. These negation preconditions are not per-
mitted in the rule conditions of Algorithm 1. Fig. 7a shows
the impact of d and ppre on execution time. We plot the
number of ppre on x-axis and the execution time (in ms) on
y-axis. We plot each curve for a different value of d. For
these graphs we use, attr = 10, scope = 40, g = 4. As expected,
the execution time increases with the increase of number of
ppre as it more takes time to check the required values for
the attributes included in precondition conjuncts of admin-
istrative rules with the increasing attribute value pair
required in query (denoted by d). For instance, the execution
time for attr = 10, scope = 40 with ppre = 5 and d = 30 is nearly
.22 ms, which is much higher than for same parameters but
d = 10. The major reason is as the reachability query has
more attribute values pair to be satisfied, it will take more
time to generate a feasible plan.

Fig. 7b shows the impact on execution time when we vary
the scope and number of attributes attr (shown as Attributes).
We plot the number of attributes on the x-axis and the time
consumed for plan on the y-axis. In all problem instances, we
ran the experiment with d =10, g = 4 and ppre = 5. Our results
show that there is no trend of time increase as the number of
attributes increase. However, the total time to execute a query
in general is less with larger scope. As we are generating the
query randomly with the fixed d, the time for solving the
query shall overall be small as we have larger initial state due
to more attributes or scope. Similarly, as shown in Fig. 7c, we
vary the number of attributes and number of groups in the ini-
tial state. For all instances, we use d = 10, scope = 40, ppre = 5.

We observe, for highest number of groups, g = 20, the execu-
tion time constantly remains high except for attr = 40. It is pos-
sible that with the large number of attributes in the initial
state, the query is satisfied in early states yielding a fast plan
execution. However, the dynamic generator with different
queries, initial states and administrative rules, the graphs will
not be able to provide a set pattern but it is fair to conjecture

Fig. 8. Performance of Algorithms 2 & 3 with Diff. parameters.

856 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

that overall time is still less than .30 ms with large number of
attributes, values and groups.

Results for Algorithms 2 & 3.The results for Algorithm 2
are shown in Figs. 8a and 8b and for Algorithm 3 are illus-
trated in Figs. 8c and 8d. We calculate the plan generation
execution time based on the number of positive ppre and
negation conjuncts (npre) prescribed in a rule precondition.
We perform calculations for increasing numbers of npre fol-
lowed by combined ppre and npre in equal numbers. In prac-
tical scenarios, we assume that an administrative rule will
not have more than 10 conjuncts to be satisfied for a given
attribute value pair or group. Fig. 8a shows the impact of
negative precondition conjuncts npre (on x-axis) and d on
the execution time for Algorithm 2. The curve is nearly flat
for the different values of npre with same d. We observe that
checking attribute values that are not in the current state
(due to npre requirement) for user does not take much time
while the execution time increases with increasing number
of required attribute-value pair in query that are not in the
current state since more values are to be satisfied. Fig. 8c
captures the behaviour for Algorithm 3 with the same
parameter values as for Algorithm 2. It shows similar
behavior except the increase in the execution time to run
Algorithm 3. This is due to the fact that Algorithm 3 is more
complex and requires checking all the different pre-condi-
tions before generating the plan.

Figs. 8b and 8d evaluate the impact of changing both npre
and ppre respectively for Algorithms 2 and 3. We plot the
number of ppre and npre conjuncts on x-axis against execu-
tion time and observe the curves for d = 10 to 30. The plan
generation time increases in both graphs as the required
attribute values in query increase with d. It happens as the
expected values for satisfying query in current state are
higher when the value of d is large. The calculation time for
the same parameters is higher in the graphs for Algorithm
3. For all the graphs in Fig. 8, we see the increase in con-
sumed time when we increase the value of d.

The parameters assumed in our set of experiments are
realistic in practical situations, for example, we do not expect
users to carry 1000s of attributes or an organization having
100s of groups or administrative rules. However, it does not
limit the scalability of our algorithms and the reachability
problems can be solved in very reasonable amount of time.

10 CONCLUSION AND FUTURE WORK

Attributes based access control defines permissions of enti-
ties based on their attributes. In this work, we presented
reachability analysis for effective attributes of the user
based on the direct attributes assignment to the user or its
member user groups. We first stated the HGABAC model
and GURAG administrative model to provide some back-
ground. We defined a restricted form of GURAG, referred
as rGURAG and classified three schemes rGURAG0

,
rGURAG1

and rGURAG1þ to discuss different reachability
solutions. In general, we proved the reachability problem
for rGURAG scheme is intractable as PSPACE-complete but
with certain restrictions, polynomial time algorithms can
also be achieved. We empirically evaluated the algorithms
under different varying parameters to understand its practi-
cality and use in real world scenarios. In future, we can

develop more polynomial algorithms for some restricted
forms and perform reachability analysis on other types of
queries like effective user groups or minimum number of
administrative requests to satisfy query.

ACKNOWLEDGMENTS

We are also grateful to Dr. Mahmoud Abdelsalam for his
critical comments during the early phase of this work.

REFERENCES

[1] R. S. Sandhu and P. Samarati, “Access control: Principle and
practice,” IEEE Commun. Mag., vol. 32, no. 9, pp. 40–48, Sep. 1994.

[2] R. S. Sandhu, “Lattice-based access control models,” IEEE Com-
put., vol. 26, no. 11, pp. 9–19, Nov. 1993.

[3] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access control models,” IEEE Comput., vol. 29, no. 2,
pp. 38–47, Feb. 1996.

[4] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based
access control model covering DAC, MAC and RBAC,” in Proc.
IFIP Annu. Conf. Data Appl. Secur. Privacy, 2012, pp. 41–55.

[5] L. Wang et al., “A logic-based framework for attribute based
access control,” in Proc. ACM Workshop Formal Methods Secur.
Eng., 2004, pp. 45–55.

[6] H.-B. Shen and F. Hong, “An attribute-based access control model
for web services,” in Proc. IEEE 7th Int. Conf. Parallel Distrib. Com-
put. Appl. Technol., 2006, pp. 74–79.

[7] V. C. Hu et al., “Guide to attribute based access control (ABAC) def-
inition and considerations,” NIST Special Publication, Nat. Inst.
Standards Technol., Gaithersburg, MD, USA, Tech. Rep. 800–162,
2014.

[8] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based
access control,” IEEEComput., vol. 48, no. 2, pp. 85–88, Feb. 2015.

[9] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proc. 13th ACM Conf. Comput. Commun. Secur., 2006, pp. 89–98.

[10] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Free-
man, “A flexible attribute based access control method for grid
computing,” J. Grid Comput., vol. 7, no. 2, 2009, Art. no. 169.

[11] E. Yuan and J. Tong, “Attributed based access control (ABAC) for
web services,” in Proc. IEEE Int. Conf. Web Serv., 2005, Art. no. 569.

[12] K. Frikken, M. Atallah, and J. Li, “Attribute-based access control
with hidden policies and hidden credentials,” IEEE Trans. Com-
put., vol. 55, no. 10, pp. 1259–1270, Oct. 2006.

[13] M. V. Tripunitara and N. Li, “The foundational work of Harrison-
Ruzzo-Ullman revisited,” IEEE Trans. Dependable Secure Comput.,
vol. 10, no. 1, pp. 28–39, Jan./Feb. 2013.

[14] L. Cirio, I. F. Cruz, and R. Tamassia, “A role and attribute based
access control system using Semantic Web technologies,” in Proc.
OTM Confederated Int. Conf. Move Meaningful Internet Syst., 2007,
pp. 1256–1266.

[15] M. J. Covington and M. R. Sastry, “A contextual attribute-based
access control model,” in Proc. OTM Confederated Int. Conf. Move
Meaningful Internet Syst., 2006, pp. 1996–2006.

[16] M. Gupta and R. Sandhu, “Authorization framework for secure
cloud assisted connected cars and vehicular Internet of Things,”
in Proc. 23rd ACM Symp. Access Control Models Technol., 2018,
pp. 193–204.

[17] M. Gupta et al., “An attribute-based access control model for
secure big data processing in hadoop ecosystem,” in Proc. 3rd
ACMWorkshop Attribute-Based Access Control, 2018, pp. 13–24.

[18] M. Gupta et al., “Dynamic groups and attribute-based access con-
trol for next-generation smart cars,” in Proc. 9th ACM Conf. Data
Appl. Secur. Privacy, 2019, pp. 61–72.

[19] M. Gupta, F. M. Awaysheh, J. Benson, M. Alazab, F. Patwa, and R.
Sandhu, “An attribute-based access control for cloud-enabled
industrial smart vehicles,” IEEE Trans. Ind. Informat., vol. 17, no. 6,
pp. 4288–4297, Jun. 2021.

[20] M. Gupta, J. Benson, F. Patwa, and R. Sandhu, “Secure V2V and
V2I communication in intelligent transportation using cloudlets,”
IEEE Trans. Services Comput., to be published, doi: 10.1109/
TSC.2020.3025993.

[21] S. Bhatt, T. K. Pham, M. Gupta, J. Benson, J. Park, and R. Sandhu,
“Attribute-based access control forAWS Internet of Things and secure
industries of the future,” IEEEAccess, vol. 9, pp. 107 200–107 223, 2021.

GUPTA ETAL.: REACHABILITYANALYSIS FOR ATTRIBUTES IN ABACWITH GROUP HIERARCHY 857

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSC.2020.3025993
http://dx.doi.org/10.1109/TSC.2020.3025993

[22] D. Servos and S. L. Osborn, “HGABAC: Towards a formal model
of hierarchical attribute-based access control,” in Proc. Int. Symp.
Found. Pract. Secur., 2014, pp. 187–204.

[23] M. Gupta and R. Sandhu, “The GURAG administrative model for
user and group attribute assignment,” in Proc. Int. Conf. Netw.
Syst. Secur., 2016, pp. 318–332.

[24] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
model for role-based administration of roles,” ACM Trans. Inf.
Syst. Secur., vol. 2, no. 1, pp. 105–135, 1999.

[25] X. Jin, R. Krishnan, and R. Sandhu, “A role-based administration
model for attributes,” in Proc. 1st Int. Workshop Secure Resilient
Archit. Syst., 2012, pp. 7–12.

[26] X. Jin, R. Krishnan, and R. Sandhu, “Reachability analysis for role-
based administration of attributes,” in Proc. ACM Workshop Digit.
Identity Manage., 2013, pp. 73–84.

[27] M. A. Harrison,W. L. Ruzzo, and J. D. Ullman, “Protection in oper-
ating systems,”Commun. ACM, vol. 19, no. 8, pp. 461–471, 1976.

[28] M. V. Tripunitara and N. Li, “A theory for comparing the expres-
sive power of access control models,” J. Comput. Secur., vol. 15,
no. 2, pp. 231–272, 2007.

[29] N. Li and M. V. Tripunitara, “Security analysis in role-based access
control,”ACMTrans. Inf. Syst. Secur., vol. 9, no. 4, pp. 391–420, 2006.

[30] N. Li, J. C. Mitchell, and W. H. Winsborough, “Beyond proof-of-
compliance: Security analysis in trust management,” J. ACM, vol.
52, no. 3, pp. 474–514, 2005.

[31] R. S. Sandhu, “The schematic protection model: Its definition and
analysis for acyclic attenuating schemes,” J. ACM, vol. 35, no. 2,
pp. 404–432, 1988.

[32] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan,
“Policy analysis for administrative role based access control,” in
Proc. IEEE Comput. Secur. Found. Workshop, 2006, pp. 13 pp.–138.

[33] R. S. Sandhu, “The typed access matrix model,” in Proc. IEEE Com-
put. Soc. Symp. Res. Secur. Privacy, 1992, pp. 122–136.

[34] R. J. Lipton and L. Snyder, “A linear time algorithm for deciding
subject security,” J. ACM, vol. 24, no. 3, pp. 455–464, 1977.

[35] A. Schaad and J. D. Moffett, “A lightweight approach to specifica-
tion and analysis of role-based access control extensions,” in Proc.
7th ACM Symp. Access Control Models Technol., 2002, pp. 13–22.

[36] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough,
“Towards formal verification of role-based access control
policies,” IEEE Trans. Dependable Secure Comput., vol. 5, no. 4,
pp. 242–255, Fourth Quarter 2008.

[37] P. V. Rajkumar and R. Sandhu, “Safety decidability for pre-authori-
zation usage control with finite attribute domains,” IEEE Trans.
Dependable Secure Comput., vol. 17, no. 3, pp. 465–478,May/Jun. 2020.

[38] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A logical lan-
guage for expressing authorizations,” in Proc. IEEE Symp. Secur.
Privacy, 1997, pp. 31–42.

[39] L. Cholvy and F. Cuppens, “Analyzing consistency of security
policies,” in Proc. IEEE Symp. Secur. Privacy, 1997, pp. 103–112.

[40] A. K. Bandara, E. C. Lupu, and A. Russo, “Using event calculus to
formalise policy specification and analysis,” in Proc. IEEE 4th Int.
Workshop Policies Distrib. Syst. Netw., 2003, pp. 26–39.

[41] T. Jaeger, X. Zhang, and A. Edwards, “Policy management using
access control spaces,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 3,
pp. 327–364, 2003.

[42] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,”
inProc. IEEE 27th Int. Conf. Softw. Eng., 2005, pp. 196–205.

[43] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman,
“Efficient policy analysis for administrative role based access
control,” in Proc. 14th ACM Conf. Comput. Commun. Secur.,
2007, pp. 445–455.

[44] S. D. Stoller, P. Yang, M. I. Gofman, and C. Ramakrishnan,
“Symbolic reachability analysis for parameterized administrative
role-based access control,” Comput. Secur., vol. 30, no. 2, pp. 148–164,
2011.

[45] P. Gupta, S. D. Stoller, and Z. Xu, “Abductive analysis of adminis-
trative policies in rule-based access control,” IEEE Trans. Depend-
able Secure Comput., vol. 11, no. 5, pp. 412–424, Sep./Oct. 2014.

[46] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “An analysis of expres-
siveness and design issues for the generalized temporal role-
based access control model,” IEEE Trans. Dependable Secure Com-
put., vol. 2, no. 2, pp. 157–175, Second Quarter 2005.

[47] J. Crampton and G. Loizou, “Administrative scope: A foundation
for role-based administrative models,” ACM Trans. Inf. Syst.
Secur., vol. 6, pp. 201–231, 2003.

[48] W. J. Savitch, “Relationships between nondeterministic and deter-
ministic tape complexities,” J. Comput. Syst. Sci., vol. 4, no. 2,
pp. 177–192, 1970.

[49] C. B€ackstr€om and B. Nebel, “Complexity results for SAS+
planning,” Comput. Intell., vol. 11, no. 4, pp. 625–655, 1995.

Maanak Gupta (Member, IEEE) received the
BTech degree in computer science and engineer-
ing from Kuruskhetra University, Kurukshetra,
Haryana, India, the MS degree in information
systems from Northeastern University, Boston,
Massachusetts, and the MS and PhD degrees in
computer science from the University of Texas at
San Antonio (UTSA), San Antonio, Texas, and
has also worked as a postdoctoral fellow with the
Institute for Cyber Security (ICS), UTSA. He is
currently an assistant professor in computer sci-

ence with Tennessee Technological University, Cookeville, USA. His
research interests include security and privacy in cyber space focused in
studying foundational aspects of access control and their application in
technologies including cyber physical systems, cloud computing, IoT,
and Big Data. He has worked in developing novel security mechanisms,
models and architectures for next generation smart cars, smart cities,
intelligent transportation systems, and smart farming.

Ravi Sandhu (Fellow, IEEE) is the founding execu-
tive director and chief scientist with the Institute for
Cyber Security, University of Texas at San Antonio,
Texas, where he holds the Lutcher Brown endowed
chair in cyber security. He is a fellow of the ACM
and AAAS and an inventor on 30 patents. He was
the past editor-in-chief of the IEEE Transactions on
Dependable and Secure Computing, past founding
editor-in-chief of the ACM Transactions on Informa-
tion and System Security and a past chair of ACM
SIGSAC. He founded ACM CCS, SACMAT, and

CODASPY, and has been a leader in numerous other security conferences.
His research has focused on security models and architectures, including
the seminal role-based access control model. His papers have accumu-
lated more than 46,000 Google Scholar citations, including more than
9,500 citations for the RBAC96 paper.

Tanjila Mawla is currently working toward the
doctoral degree with the Department of Compu-
ter Science, Tennessee Technological University,
Cookeville, Tennessee. Her research interests
include access control, formal security models, and
enforcement mechanisms for smart ecosystems.

James Benson received the BSc and MSc
degrees in physics from Clarkson University, Pots-
dam, New York, in 2007 and 2009, respectively,
and the MSc degree in electrical engineering from
the University of Texas at San Antonio (UTSA),
San Antonio, Texas, in 2016. He has worked with
the Texas Renewable Energy Institute (TSERI) and
the Open Cloud Institute (OCI), UTSA, where he
was assisting with data analytics and various
research projects. He is currently working as a
technology research analyst II with the Institute for

Cyber Security (ICS) and the Center for Security and Privacy Enhanced
Cloud Computing (C-SPECC), UTSA. His research interests include cyber
physical systems, cloud computing, and automation.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

858 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 04,2024 at 21:04:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

