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ABSTRACT Internet of Things (IoT) is revolutionizing and enhancing the quality of human lives in every
aspect. With a disruption of IoT devices and applications, attackers are leveraging weak authentication and
access control mechanisms on these IoT devices and applications to gain unauthorized access on user devices
and data and cause them harm. Access control is a critical security mechanism to secure the IoT ecosystem
which comprises cloud computing and edge computing services along with smart devices. Today major
cloud and IoT service providers including Amazon Web Services (AWS), Google Cloud Platform (GCP),
and Azure utilize some customized forms of Role-Based Access Control (RBAC) model along with specific
authorization policies enabled by policy-based access control models. To enable fine-grained access control
and overcome limitations of existing access control models, there is an imminent need to develop a flexible
and dynamic access control model for securing smart devices, data and resources in the cloud-enabled IoT
architecture. In this paper, we develop a formal attribute-based access control (ABAC)model for AWS IoT by
building upon and extending previously developed access controlmodel for AWS IoT, known asAWS-IoTAC
model. We demonstrate the applicability of our proposed model through an industrial IoT use case and its
implementation in the AWS IoT platform. Our proposed fine grained model for AWS IoT incorporates its
existing capabilities and introduces new attributes for IoT entities and attribute-based policies for enabling
expressive access control in AWS IoT.We also evaluate the performance of our model on the AWS cloud and
IoT platform with the future smart industries use-case to depict the feasibility of our model in a real-world
platform.

INDEX TERMS Internet of Things, smart industries, future manufacturing, access control, security, privacy,
digital twins, attribute-based access control.

I. INTRODUCTION
Internet of Things (IoT) is a rapidly emerging domain with
billions of connected devices and data-driven applications
that are enabling various smart infrastructures, such as smart
homes, E-Health, smart transportation, smart farming [1], [2],
and smart manufacturing. Today, we live in a giant intercon-
nected ecosystem where IoT devices collect large amount
of data associated with users and their surroundings and
leverage cloud computing resources for storing and analyzing

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

data in order to extract useful insights from the data.
This evolving paradigm incorporating cloud computing,
edge computing, and IoT is known as cloud-enabled IoT
(CE-IoT) [3]. A real-world industry realization of CE-IoT is
evident with major cloud services providers, such as Amazon
Web Services (AWS) [4], Google Cloud Platform (GCP) [5],
and Microsoft Azure [6], and their IoT platforms. In such
largely interconnected and diverse cyberspace, new secu-
rity and privacy risks associated with cloud and IoT users,
devices, data, and applications are surfacing every day. In this
paper, we focus on access control and authorization aspects
in a real-world CE-IoT platform, AWS IoT [7].
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AWS is one of the largest1 cloud services provider today.
It offers various services including Internet of Things (IoT),
AWS Greengrass2 (an edge computing service), AI and
Machine Learning and IoT Analytics. AWS IoT is a
real-world cloud-enabled IoT platform which is build on
AWS’s cloud services. It allows IoT devices to securely
connect and communicate with each other as well as other
cloud services and applications. We envision that AWS cloud
services and its IoT service can enable real-world imple-
mentations of various IoT domains including smart com-
munities, smart industries, and smart healthcare in the near
future. However, in such smart ecosystem with ubiquitous
IoT devices and cloud computing services available to users,
both legitimate users to benefit andmalicious users to exploit,
securing access to cloud resources, connected devices, and
data collected from these devices is an ongoing research
challenge. There is an imminent need for a dynamic and
flexible access control model for CE-IoT.

A. MOTIVATION
The current state-of-art access control model utilized in most
cloud computing platforms is Role-Based Access Control
(RBAC) [8], [9] model, a dominant and mature access control
model in the industry. Another access control model that has
recently become popular in cloud platforms is Policy-Based
Access Control (PBAC), which is also used in AWS cloud.
However, there are some inherent limitations of these mod-
els, such as role explosion in RBAC. For example, creating
various roles for assigning permissions on billions of devices
and users would result in role-explosion problem. Previously
developed AWS cloud access control (AWSAC) [10] and
AWS IoT Access Control (AWS-IoTAC) [11] models are
based on policy based approach and also utilize groups and
customized roles for assigning permissions to various enti-
ties. With a large number of IoT devices, various policies and
roles are needed for assigning permissions, which again raises
the same issue with policy explosion and role explosion for
billion of devices, especially in the futuristic smart connected
environment. For instance, in a smart manufacturing plant,
there can be various departments, units, and employees, and
several IoT devices (e.g., sensors, actuators). A complex
access control scenario is that within a specific department,
we want to restrict access of employees working in unit 1 on
the smart devices that they own within unit 1. Furthermore,
we need to check the shift hours for each employee before
allowing the access to factory devices and resources. Here,
we need to adopt a more flexible access control approach,
such as attribute-based access control (ABAC) [12], [13],
which allows to define attributes for entities and environmen-
tal conditions (e.g., time, location, etc.) and specify access
control policies based on those attributes.

1https://www.statista.com/chart/18819/worldwide-market-share-of-
leading-cloud-infrastructure-service-providers/

2https://aws.amazon.com/greengrass/

Another scenario where we need an ABAC approach is
when we want to control access of specific type of devices
and their communication with other devices during office
hours. For enabling this, we need to define specific device
attributes, data communication channel attributes, and con-
textual attributes, whichwould then be used in attribute-based
access control policies.

In this paper, we develop a formal ABAC model for AWS
IoT by extending AWS-IoTAC model, (discussed in detail
in Section 2). The ABAC AWS-IoTAC model allows to
define attributes of different entities (e.g., IoT devices, virtual
objects or digital twins, topics) and use these attributes and
their values while specifying authorization policies which
determine an access decision, either allow or deny, based on
these policies. The new ABAC model for AWS IoT incorpo-
rates its existing access control capabilities and further enable
fine-grained and flexible access control on IoT devices,
things, data and resources, and services. Ultimately, lessons
learned from developing an ABACmodel based on AWS IoT
will be valuable for similar development in other platforms
and further benefit studies on a platform-independent model
also.

To demonstrate the capabilities of our ABAC model,
we present a secure future industries use case, more specif-
ically a smart oil refinery factory, and its proof-of-concept
implementation using our proposed ABAC AWS IoT model.
Industries of the future including advance manufacturing
and smart factories will be shaping the economy of a
nation. Major funding agencies as National Science Founda-
tion (NSF) and Department of Energy (DoE) have announced
more than $1 billion in awards for establishing research and
development centers to advance industries of the future.3

In our smart factory use case, we define different types of enti-
ties such as users, groups, IoT devices, things and their virtual
objects [14] (which are digital representations of the physical
devices, also known as device shadows inAWS, and/or digital
twins in other platforms), thing groups, and topics/channels
used for communication in publish/subscribe communica-
tion paradigm, and their specific attributes. We utilize the
AWS IoT, AWS Greengrass, and AWS Lambda service to
demonstrate the proof-of-concept implementation and spec-
ify attribute-based access control policies that allows specific
operations on protected entities from authorized actors based
on attributes and their values. A detailed discussion on this
is presented in implementation section later followed by the
performance evaluation of our model that depicts its feasibil-
ity in a large real-world CE-IoT platform.

A summary of our contributions is as follows:
• We develop a formal ABAC model for AWS IoT
to enable flexible and fine-grained access control for
billions of smart devices, users, resources, and applica-
tions in a real-world IoT platform that can enable secure
smart industries of the future.

3https://www.arcweb.com/blog/us-nsf-doe-invest-1-billion-5g-ai-
quantum-computing-advance-industries-future

VOLUME 9, 2021 107201



S. Bhatt et al.: ABAC for AWS IoT and Secure Industries of Future

FIGURE 1. Industries of the future with different types of communications.

• We present an Industrial IoT (IIoT) use case scenario
which is a smart oil factory with specific entities, groups,
and attributes.

• We implement a proof-of-concept of our ABAC model
in AWS IoT alongwith other AWS services.We envision
that the proposed ABAC model would act as a founda-
tion to secure industries of the future.

• In order to analyze the performance and feasibility of
our ABAC AWS-IoTAC model, we conduct experimen-
tal analysis to analyze the performance, usability, and
feasibility of our proposedmodel in a real-world CE-IoT
platform - AWS cloud and IoT.

The rest of paper is organized as follows. In Section 2,
we first discuss the industries of the future, then provide
background on the AWS-IoTAC model followed by a com-
parison or our model with existing models and AWS-IoTAC
model. In Section 3, we present our proposed ABAC model
for AWS IoT and define the formal definitions. Section 4 dis-
cusses smart industries use case scenario in detail and
Section 5 presents the implementation details of the use
case utilizing our ABAC model in AWS IoT platform.
It also presents the performance analysis and results of our
model and then provides a discussion on capabilities and
limitations of the model. Finally, Section 5 concludes the
paper.

II. BACKGROUND AND RELATED WORK
In this section, we present a brief background on industries of
the future, and the AWS IoT Access Control (AWS-IoTAC)
model along with its formal definitions. We also provide a
comparison of our model with other relevant access control
models.

A. INDUSTRIES OF THE FUTURE
Industries of the Future (IotF) is an emerging concept built
upon the foundational technology and capabilities of IoT and
Cyber Physical Systems (CPS). Recently, IotF is receiving
significant attention and investments from major funding
organizations, such as National Science Foundation (NSF),
and Department of Energy (DoE). A collection of technolog-
ical domains including artificial intelligence (AI), advanced
manufacturing, quantum information science, 5G/advanced
wireless technology, and biotechnology together form the
industries of the future (IotF). It is also referred as Indus-
try 4.0 (more recently as Industry 5.0) which is enabled by the
convergence of various technology domains including IoT,
CPS, Cloud and edge computing and intelligent systems uti-
lizing AI. IotF will play a major role in strengthening national
infrastructure and driving national economy in coming years.

Figure 1 shows some of specific smart industries – Smart
Factory, Smart Manufacturing, and Oil & Gas Refinery.
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FIGURE 2. AWS-IoT access control (AWS-IoTAC) model within a single project [11].

These smart industries are also referred as Industrial Internet
of Things (IIoT). These industries encompass various compo-
nents including smart sensors, actuators, machinery, indus-
try employees, services at edge and cloud and data-driven
applications. With various components involved, there are
different types of communications and data transfer that can
happen between these components (as shown in Figure 1)
which enable to accomplish specific tasks autonomously with
minimal human intervention. The core objective of IIoT is to
enhance operational efficiency, resource utilization and man-
agement, and cost optimization in these industrial domains.
However, this new technology advancement also introduces
new security and privacy risks in addition to existing threats.
A recent ransomware attack4 on the Colonial Pipeline dis-
rupted oil company’s operations and crippled fuel delivery
on the Atlantic coast in US. The company paid 75 Bitcoin
(i.e., 5 million US dollars) as ransom to the Darkside,
the hacker group responsible for the cyber attack, for recov-
ering their data and resources and resume normal operation.
This cyber attack is a prime example of the threat we are
facing and we can only imagine how it will expand with
smart industries in the future. Thus, we need to develop secure
access control and data communication models for enhanced
security and privacy of future smart industries.

In this paper, we present a smart oil and gas refinery use
case to demonstrate the applicability of our attribute-based
access control model for AWS IoT. The use case involves
various IoT sensors and actuators, wearable devices, and
services and applications to increase operational efficiency,
to perform real-time monitoring of workers and machinery,
to achieve effective and efficient management of resources,

4https://www.nytimes.com/2021/05/14/business/darkside-pipeline-
hack.html

and to enable autonomous operations through connected
machines within a factory. We implement this use case
in a real-world cloud-enabled IoT platform, AWS IoT,
and demonstrate how attribute-based access control model
and policies are employed to secure access and commu-
nications between sensors, actuators, and wearable devices
of the employees. A detailed discussion is presented
in Section IV and V.

B. AWS IoT ACCESS CONTROL (AWS-IoTAC) MODEL
In this subsection, we briefly describe the Amazon Web Ser-
vices (AWS) IoT Access Control (AWS-IoTAC) model [11]
and its formal definitions. The AWS-IoTAC model is
build upon AWS cloud access control model, known as
AWSAC [10] and has incorporated basic cloud access con-
trol components and complemented by the novel IoT access
control components including entities and access control
operations. Figure 2 shows the developed AWS IoT access
control (AWS-IoTAC) model along with the formal defini-
tions in Table 1 focusing on the AWS-IoTAC components.
The model has the following components: Accounts (A),
Users (U), Groups (G), Roles (R), Services (S), Object
Types (OT), Operations (OP), AWS IoT Service (AIS),
Certificates (C), Devices (D), IoT Objects (IO), IoT Opera-
tions (IOP), and Rules along with specific relationships as
described below.

In AWS cloud, Accounts are basic resource containers
that enables customers to use cloud resources and manage
their resource utilization and billing. The Users are individu-
als authenticated and authorized to access resources through
their accounts. A user is the owner of an account who can
create multiple users within that account and can assign them
specific permissions on cloud resources. Groups are a set
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TABLE 1. AWS-IoTAC formal model definitions.

of user groups and user_group relation specifies the user to
group assignment. AWS supports policy-based access control
model. There is also a concept of roles though it is differ-
ent from the known notion of roles in Role-Based Access
Control (RBAC) [8]. In AWS, Roles are used to enable
secure access between multiple accounts (cross-accounts).
The AssumeRole action allows to specify permissions for
specific roles which provides access to corresponding cloud
resources across multiple accounts. The user-role mapping is
specified through virtual user_role relation. To distinguish
the AWS ‘‘Roles’’ from RBAC roles, quotation marks are
used in Figure 2. For simplicity, we understand roles to
signify ‘‘Roles’’ unless otherwise stated. Services refer to
AWS cloud services. Object Types represent a specific type
of an object in a cloud service, such as virtual machines in
EC2 service.Operations represent allowed operations on the
object types based on the access control policies that specify
a set of permissions on object types belonging to a particular
service.

The access control in AWS takes a policy-based access
control approach. In AWS, a policy is specified in a JSONfile
which includes permissions defined on services and resources
in the cloud. It comprises of three main parts (or tags)
Effect, Action and Resources, and optionalConditions. A pol-
icy can be attached to a user, group, role or to specific
cloud resource. Virtual Permission Assignment is the pro-
cess of virtually assigning permissions to users, roles, and
groups through attaching policies to these entities. In cases
where a policy is attached to a resource, a specific Principal

(an account, a user or a role) needs to be specified in the
policy. There could be multiple permissions defined in one
policy, and multiple policies could be attached to one or more
entities to assign appropriate permissions on them.

The AWS IoT Service (AIS) is the novel service added
to the AWSAC model. It incorporates all the IoT specific
entities and their access and authorizations aspects, thus, it is
represented as a separate entity in the model. Certs (C) is a
set of X.509 certificates, issued by a trusted entity known as
the certificate authority (CA). These can be generated by AIS
or other trusted CAs for the IoT clients. In AIS, the Certs are
used by MQTT based clients (IoT devices or user applica-
tions) to authenticate to AIS and also assigning permissions
for different entities by attaching access control policies to
Certs. MQTT,5 an OASIS standard, is a machine-to-machine
(M2M) lightweight publish/subscribe messaging protocol,
especially designed for constrained devices.Devices (D) rep-
resent a set of connected IoT devices, such as sensors or
light bulbs. These devices can exist independent of AIS, thus,
we show them in a different color (blue circle) in the model.
A valid X.509 certificate and its private key need to be copied
onto the device, along with a root AWS CA certificate before
authentication and establishment of a secure communication
channel with the AWS IoT service. The certificates to devices
association is done through the cert_binding relation. In the
AWS IoT platform, one certificate can be attached to many
things/devices. Similarly, many certificates can be copied

5https://mqtt.org/
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onto one IoT device. However, in our model, we assume
cert_binding is an one-to-one association between devices
and certificates for better authorization management, and is
mutable in nature so can be changed by an administrator
in cases of certificate expiry or revocation. In AWS IoT,
the access control policies are attached to certificates, and
are enforced on physical IoT devices associated with these
certificates.

IoT Objects (IO) represent virtual IoT objects created in
the AWS cloud. Virtual objects are the digital counterparts
of real physical devices, or standalone logical entities (appli-
cations) in the virtual space [14]. In AWS IoT, a Thing and
a Thing Shadow represents the IoT objects which are the
virtual counterparts of real physical IoT devices associated
with the cloud. For each IoT device, we assume that there
is at least one thing with its thing shadow instantiated in
the cloud, which provides a set of predefined MQTT topics/
channels (associated with this device) to allow interaction
with other IoT devices and applications, even when the
device is offline. Thing shadow maintains the identity and
last known state of the associated IoT device. IoT Opera-
tions (IOP) are a set of operational actions defined for IoT
service, which exclude the administrative operations such as
create things, certificates, attach certificates or policies etc.
The basic set of IoT operations can be categorized based
on the communication protocols used by IoT devices and
applications to communicate with the AWS IoT service.
For MQTT clients, four basic IoT operations are available:
iot:Publish allows devices to publish a message to a MQTT
topic, iot:Subscribe allows a device to subscribe to a desired
MQTT topic, iot:Connect allows a MQTT client to connect
to the AWS IoT service, and iot:Receive allows devices
to receive messages from subscribed topics. Similarly, for
HTTP clients, iot:GetThingShadow allows to get the current
state of a thing shadow, iot:UpdateThingShadow allows to
send messages to update/change the state of a thing shadow,
and iot:DeleteThingShadow deletes a thing shadow. When-
ever a device or application sends message to a virtual thing
in the cloud, a new thing shadow is automatically created,
if one does not already exist.

Rules (Ru) are simple SQL statements which trigger pre-
defined actions based on the conditions defined in the rule.
A rule receives data from a device/thing and triggers one
or more actions. The actions route the data from one IoT
device to other IoT devices, or to other AWS services. Each
rule must be associated with an IAM (Identity and Access
Management) role which grants it permissions to access IoT
objects and AWS services on which actions are triggered.
The relation trigger_action represents a many-to-manymap-
ping between rules and IoT objects and AWS services on
which the rule triggers action(s). The access control policies
in AWS have been modified to include IoT operations and
resources, and are thereby named as IoT policies. AWS IoT
utilizes both IoT policies and IAM policies to assign specific
permissions to IoT devices, IAM users, and IoT applications.
Consequently, Virtual Permission Assignment (VPA) has

been updated to include the IoT policies, and these policies
are attached to X.509 certificates. The policy attached to a
certificate is enforced on the device which uses that certificate
to connect and authenticate to the AWS IoT service. One
policy can be attached to multiple certificates, or multiple
policies can be attached to one certificate.

All the components and relations of AWS-IoTAC model
is defined within the scope of a single AWS account.
The AWS IoT service has been evolved over past years and
a new formal definition along with formal ABAC model
is needed in AWS IoT to offer fine grained and flexible
policy specification. In this paper, we propose extension of
AWS-IoT service with ABAC considering the new capabil-
ities of the AWS IoT service and incorporate new compo-
nents and capabilities in our ABAC model for AWS IoT,
as described in Section III.

C. COMPARISON WITH EXISTING ACCESS CONTROL
MODELS
Here, we briefly discuss related work on both general IoT
access control models and IoT domain specific access control
models that have been developed. Numerous access control
models have been proposed to address security and privacy
issues in IoT and CPS systems. A comprehensive survey of
IoT access control models is presented byOuaddah et al. [15].
These models are developed based on state-of-art access
control models, such as RBAC, ABAC, and Capability-Based
Access Control (CapBAC) [16], [17]. In [18], authors pro-
posed an identity authentication and capability-based access
control (IACAC) model where devices use an access point
and the CACmodel to connect with each other. The CapBAC
model is used to control access on services and informa-
tion. With the help of use cases, authors also present that
CapBAC supports rights delegation, least privileges access
principle, more fine-grained access control, reduced security
issues, and fewer issues related to identities of the enti-
ties compared to ACLs, RBAC and ABAC. More recently,
a blockchain-enabled decentralized capability-based access
control, also known as BlendCAC, has been proposed for
enhancing the security of large scale IoT systems [19].
However, there are specific limitations of CapBAC, such as
propagation and revocation [20]. Besides, researchers have
developed platform independent IoT access control mod-
els based on RBAC, such as [21]–[23], and ABAC, such
as [24]–[26]. Several access control Lists (ACLs), RBAC and
ABAC models for virtual objects communication are pro-
posed in [27]. In [28], authors proposed a hybrid access con-
trol model for IoT based on RBAC and ABAC. It utilizes user
attributes to assign roles to specific users. However, the scope
of this paper is focused on developing an attribute-based
access control model for a real-world CE-IoT platform,
AWS IoT, which can allow researchers and developers to
implement and adopt an ABAC approach in other CE-IoT
platforms with similar capabilities.

Moreover, there are specific access control models devel-
oped for real-world cloud-enabled IoT platforms, i.e, AWS,
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Google, Azure, and IoT domains, such as smart homes,
smart farming, smart health and remote patient monitor-
ing, and smart transportation. In [11], Bhatt et al. devel-
oped a formal access control model for AWS IoT, known
as AWS-IoTAC. This model was developed based on
AWS Cloud Access Control (AWSAC) model [10]. Gupta
et al developed access control models for Google Cloud
Platform (GCP) and GCP IoT, known as GCPAC and
GCP-IoTAC model respective [29]. Another access control
model is developed for Azure IoT cloud which is known
as Priority-Attribute-Based RBAC Model for Azure IoT
Cloud (PARBAC) [30]. While the above mentioned access
control models have been developed for cloud-enabled IoT
platforms, these models are based on RBAC and PBAC
approaches, and even PARBAC also utilizes a special type
of attribute. Thus, these models are not based on ABAC
model. In this paper, we mainly focus on ABAC approach for
developing a fine-grained and flexible access control model
for AWS IoT.

Similarly, several access control models are developed for
specific IoT application domains. In [31], authors presented
the current state of access control for smart home devices,
mainly focusing on the access control aspects in three devices
of smart lighting system, bathroom scale, and door lock.
They found that these heterogeneous smart home devices
do not have a unified access control approach but rather
have their own mechanisms to enable access. This depicts
the complexity of developing an access control model for
specific IoT application domains. In [32], authors proposed
a privacy-aware smart health access control system (PASH)
which is based on ciphertext-policy attribute-based encryp-
tion (CP-ABE). Their approach is stated to incorporate a large
universe for CP-ABE and also hides sensitive attribute values
in the access control policies, which could reveal sensitive
health related information.

Recently, Ameer et al. [33] developed an extended gen-
eralized role based access control (EGRBAC) model for
smart home IoT. However, to enable more fine-grained access
control while capturing complex relationships between users
and devices, they developed smart home IoT attribute-based
access control (HABAC) [34] particularly for smart homes.
Besides, a role-based administrative model is proposed for
EGRBAC in [35] by Shakarami and Sandhu. In the con-
text of smart transportation, several access control models
have been proposed by Gupta et al for securing access
between different entities, such as sensors, actuators, vir-
tual objects, edge cloudlets and cloud services and appli-
cations [36]–[39]. An attribute-based access control model
is proposed for smart farming in [40]. Another example
in healthcare domain is [41] which proposes a lightweight
and fine-grained access control system for smart health-
care utilizing attribute-based encryption and leveraging cloud
and edge enabled architecture. More recently, in [42],
authors proposed a convergent access control framework
to enable synergistic convergence between access control
models, such as RBAC, ABAC, relationship-based access

control (ReBAC) [43], [44], and other access control mod-
els, such as Usage Control (UCON) [45], as per the access
control requirements of specific domains. Authorizations
in several cloud-enabled IoT domains along with current
trends and several use cases are presented in [46]. Moreover,
an attribute-based communication control (ABCC) is devel-
oped to secure data communication and data flow between
various components in cloud-enabled IoT architectures [47].

We discussed several access control models from different
aspects here including general IoT access control models,
cloud and edge enabled IoT access control models, and con-
vergent models. However, in this paper, our goal is to develop
an attribute-based access control (ABAC)model for AWS IoT
platform which provides a cloud and edge based architecture
as well as enable real-world implementations of various IoT
application domains. Therefore, it is critical to understand the
formal access control aspects in such real-world cloud and
IoT platforms and propose a comprehensive ABACmodel for
it. The ABAC model for AWS IoT is significantly different
than the prior AWS IoT access control (AWS-IoTAC) model.
AWS-IoTAC is a policy-basedmodel, whereas the newmodel
is an ABAC model. In addition, the AWS IoT platform
has evolved over time and has introduced new IoT entities
and capabilities. We have captures these new IoT entities
in our proposed model and also proposed different types of
attributes for these entities. To implement and incorporate
these attributes and ABAC authorization policies, we utilized
several AWS cloud services, primarily AWS Lambda and
AWS Greengrass, with detailed discussion presented in the
Implementation and Results section later.

III. EXTENDING AWS-IoTAC WITH ABAC
In 2017, Bhatt et al proposed a formal access control model
for AWS IoT known as AWS-IoTAC [11]. The AWS-IoTAC
model was developed based on its policy-based access con-
trol capabilities and its documentation, as available in 2017.
The authors also proposed a set on ABAC enhancements
for supporting fine-grained access control in contrast to its
policy-based approach. However, with the proliferation of
IoT and new use cases, the access control capabilities of
AWS-IoT have changed significantly over last few years.
Hence, a revised formal model is needed. Here, we develop
and enforce an Attribute-Based Access Control (ABAC)
model for AWS IoT by extending the AWS-IoTAC model
with new AWS IoT capabilities. This novel ABAC model
support the specification of fine grained security policies
using attributes of various entities, such as IoT devices, virtual
objects, and topics. In addition to the new access control
components, our proposed ABAC model uses components
of AWS-IoTAC and the current cloud Identity and Access
Management (IAM) entities.

Figure 3 shows our ABAC enhanced AWS-IoT access
control model along with different components which are
formally defined in Table 2. In this model, we primarily
focus on the IoT service and its operational access control
and authorization aspects. The operational access control
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FIGURE 3. Conceptual attribute based access control for AWS-IoT service.

in AWS IoT encompasses IoT operations, such as connect,
publish, subscribe, etc. The administrative access con-
trol of AWS IoT is outside the scope of this paper. For
instance, ‘create or delete operations on particular entities’
(e.g., IoT things, users, groups) are examples of admin oper-
ations. We define the IoT operations in detail later while
describing the formal definitions. While some of the compo-
nents overlap with the AWS-IoTAC model, we still describe
them briefly here in the context of the proposed ABAC
AWS-IoTAC model for reader coherence and clarity. In addi-
tion, some of the components have been changed as AWS IoT
service is continuously evolving to provide new capabilities
and applications for users. As shown in the Table 2, there
are eight core entities of the model - Devices (D), Certifi-
cates (C), Things (Th), Shadows (Sh), Topics (T), Rules (Ru),
Groups (G), and Operations (OP).

Devices (D) represent physical smart devices connected to
the internet which collect/generate data and send or receive
data to or from other devices, edge gateways, applications,
and cloud services. These devices exists in the physical
environment. However, digital counterparts of these physi-
cal devices are created in AWS cloud IoT service, known
as Things (Th). These things are also referred as virtual
objects and are defined as the digital representation of phys-
ical devices (e.g., sensors, actuators, etc.) or logical entities,
such as instance of an application or a logical entity that is
associated with a physical entity. For example, there could be
multiple sensors and control units within a car (referred to
as clustered objects [36], [48]), thus, a thing can represent
a sensor within a connected car which may itself not be

connected to the AWS IoT service. Hence, there could be
multiple things associated with a connected car or vehicle.
The parentD function maps a thing to a physical device and
multiple things can be associated with one physical device.
IoT Things enable devices to send and receive message from
cloud, other smart devices, and applications. These things
are created and managed within a registry provided by the
IoT service. Each thing can be associated with a specific
Thing Type which must be defined in IoT and is immutable,
(i.e., it cannot be changed once created). Thing type is a newly
added component and are optional, however, it provides a
mechanism to represent some common information or char-
acteristics of things through a set of three possible attributes.
When a thing is associated with a specific thing type, it gets
attributes which can then be assigned values for each attribute
independently. An advantage of thing type is that it allows
the associated things to have up to fifty attributes, otherwise,
a thing can only have three attributes in AWS IoT.

Groups (G), another new component, allows to group
things together for ease of management of hundreds or prob-
ably thousands of objects in the ecosystem. There are two
types of groups – static groups and dynamic groups. Static
group is a set of things grouped together on some feature
whose members remain fixed. Dynamic groups on the other
hand are a set of things that match a certain query as specified
by user or administrator. The directG relation maps a thing
to a group. There also exists hierarchical [49] relationships
between thing groups, known as Group Hierarchy (GH).
GH is a partial order relationship on G, which implies that
thing groups can have parent and child groups and allows to
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TABLE 2. Formal ABAC model definitions for AWS-IoT service.

develop a thing group hierarchy. An access control policy can
be assigned to a static group, as defined by the PA relation.
In a static group hierarchy, a policy attached to the parent

group is inherited by subsequent child groups and member
things within those groups. Thing groups are useful when
permissions need to assigned to a large number of things and
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rather can be assigned to a group containing those things.
A thing inherits permissions from its direct parent group and
from all other groups in the group hierarchy of its parent
group through policy inheritance, specified by effThatt. How-
ever, there are limitations on groups in AWS IoT service, and
some are presented here: i) a thing can belong to a maximum
of 10 thing groups, ii) within a group hierarchy, a thing can
belong to only one direct parent thing group at any level and
the maximum depth of a thing group hierarchy is seven, and
iii) maximum number of dynamic groups is 100. Dynamic
groups are different than static groups. In dynamic groups,
there are no hierarchical relationship and group membership
cannot be defined explicitly and instead depends on a search
query defined by a user or an administrator. In addition,
we cannot assign access control policies to dynamic groups
which are important in access control. Hence, for our formal
model purpose, the thing groups G are static groups and
GH is a group hierarchy between static groups.

Shadow (Sh) is a JSON object that stores the cur-
rent (reported) state and new (desired) state. In the
AWS-IoTAC model, there was only one shadow associated
with an IoT thing. In the proposed ABAC extended model,
there can be multiple shadows associated with one thing. For
instance, an autonomous vehicle could have multiple sensors
and things, which can be represented as multiple shadows
associated with a vehicle thing. The parentTh function maps
a shadow to a thing where multiple shadows can be associ-
ated with a thing. Shadows in AWS can be updated using
updateShadow operation, retrieved using getShadow opera-
tion, and deleted using deleteShadow operation, supported
by the IoT service. Besides, there is a shadow document
that stores all the information about state changes on a par-
ticular device as per the reported and desired state. AWS
cloud have introduced an edge computing service known as
AWS Greengrass,6 which enables edge communication and
local computation. The shadows can also reside at the edge
gateway or cloudlet [38] as a virtual representation of the
device at the edge of the network. Certificates (C) are
X.509 certificates created by a trusted certificate authority
and are assigned to Things in cloud and also copied onto the
corresponding physical devices. It enables mutual authenti-
cation between IoT devices and AWS IoT service. To the
authorization front, access control policies are attached to
these certificates which in-turn assigns available permissions
for the device and its equivalent thing residing in cloud or
at edge in a gateway or cloudlet. The CA relation in Figure 3
assigns a certificate to a physical device and its corresponding
thing.

AWS IoT supports two communication protocols – MQTT
protocol based on publish-subscribe paradigm, and HTTPS
for web interfaces. In a publish-subscribe paradigm, top-
ics/channels are used for sending/publishing and receiv-
ing/subscribing messages among devices and applications.
In our ABAC model, we have proposed Topics (T) as an

6https://aws.amazon.com/greengrass/

entity which is a set of topics and act as a conduit for sending
and receiving IoT messages within different objects. These
topics are channels and follow a tree like structure separated
by slashes, for example, home/living_room/bulb is a topic
where a device can send and receive messages related to a
bulb in living room of a smart home. These topics are user
defined and are created instantaneously which provides great
flexibility and creating multiple topics for a large number of
IoT devices. In the MQTT, there is a broker to manage these
topics and a list of subscribers for each topic. It forwards
any new message publish to a specific topic to all the sub-
scribers of that topic. For instance, if Device1 publishes to
home/living_room/bulb, then any other device, say Device2,
that has subscribed to that topic will receive that message.
Rules (Ru) are the same as discussed in the AWS-IoTAC
model, which are SQL statements and can be triggered based
on IoT message content (e.g., temperature > 100) or specific
condition being met as per the rule. A rule can perform a list
of actions through the trigger_action relation.

Operations (OP) are IoT operations that can be performed
in AWS IoT. Previously, in AWS-IoTAC model, IoT Oper-
ations (IOP) represented the operational IoT operations in
the AWS IoT service. A set of operations were defined for
two communication protocols: MQTT and HTTP, and clients
using these protocols, as discussed in Section 2. The MQTT
operations are – iot:Connect, iot:Publish, iot:Subscribe and
iot:Receive. To enable publish and subscribe operations, con-
nect operations must be allowed for clients (device, appli-
cation, etc.), and receive operation is checked every time
a message is being delivered to a client. Therefore, if a
client has subscribed to a topic then it must also have
permissions for receive operation. Besides MQTT opera-
tions, there are shadow operations – iot:DeleteThingShadow,
iot:GetThingShadow, and iot:UpdateThingShadow, which
we consider administrative operations. In AWS IoT, there are
also job execution actions, though these types of actions are
outside the scope of our model.

ATT is a set of attributes representing the properties of
specific entities including devices, things, shadows, topics,
and groups. An Attribute is function that takes the entity
as input and assigns value(s) which can be atomic or set
valued, within the range (Range(att)) of that attribute. For
example, age is a user attribute function whose domain range
is defined as real numbers or integer values starting from
0 to 150. So, for a specific user Alice, age(Alice) = 35,
which means a user Alice is 35 years old. Similarly, specific
attributes and their values can be defined and identified for
other entities. The set valued attributes can have a set of
values, and atomic attributes have one value from the range
of the attribute. These attributes with a given range can be
defined by the administrator for specific entities as required
by the application scenarios.

In the AWS IoT ABAC model, devices, things, shadows,
topics, and thing groups can have attributes which represent
specific properties of entities and are defined accordingly. For
example, device attributes can be owner and location which
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represents the owner of the device and location of the device
respectively. Similarly, things and thing groups also have a
set of attributes associated with them. If there is thing th
which belongs to a thing group, then the thing will have its
own attributes as well as attributes inherited from its parent
group. Moreover, there could be group hierarchy of thing
groups. This means, effective attributes of a thing, defined
by effThatt(th) are the union of its directly assigned attributes
and all the groups’ attributes inherited through the group
hierarchy. Since a physical device have a virtual thing associ-
ated with it, where physical and virtual thing essentially have
same properties, the device and its thing attributes may be
the same. However, the device attributes are a subset of thing
attributes since things have their own attributes, attributes
inherited from their direct parent group and attributes inher-
ited from the group hierarchy, if any. Thus, a virtual thingmay
have more attributes than its corresponding physical device
through thing groups and group hierarchy.

Within the context of thing and shadow attributes, we can
define multiple shadows for a single thing and these shadows
can have a subset of thing attributes assigned to them based
on the nature of a shadow of the thing. For instance, a thing
can have five attributes defined for it and has two associated
shadows. Now, each shadow can have all the five attributes
of the thing, or both shadows may have a subset (some or
all of the thing attributes) of thing which may or may not be
common attributes among the shadows. Hence, the shadow
attributes att are a subset of thing attributes and effective
attributes of a shadow sh would be its own attributes union all
effective attribute values of associated thing (thing attributes
and its inherited attributes from parent group as well as
its GH), defined by effShatt(sh) in Table 2.
Topics also have a set of attributes that represent

their characteristics. The topic attributes are essential in
enabling fine-grained access control that allows to control
publish-subscribe communications based on topic attributes.
For instance, there could be some sensitive topics to which
only authorized devices, things, and/or clients (e.g., applica-
tions) can send and receive messages. In this case, we can use
topic attributes along with entities attributes in authorization
policies. A simple ABAC policy example in a smart factory
would be A worker in section 1 can send messages to devices
that belongs to the same section using those topics that are
active in section 1. In this case, the worker, devices, and
topic attribute values need to match for sending and receiving
messages between a worker and devices using a specific
topic. If an attacker (who is not in section 1) tries to publish
a message on a topic of section 1, then the operation will be
denied and an alert notification can be sent to an administra-
tor. How do we define and assign these attributes to specific
entities? It actually depends on use case or application sce-
nario, since smart home would have different attributes than
a smart factory or industry.

Recently, AWS IoT introduced attributes that can be
defined for things or thing groups, however, there are limited
number of attributes that can be defined. Moreover, there

is limited capability of how these attributes can be used
while defining authorization policies. Due to these limita-
tions, AWS IoT does not support completeABAC capabilities
(at the time of writing of this manuscript) as proposed by this
paper. As per the AWS IoT documentation,7 the attributes are
available as a policy variable (i.e., it can be used in the policy)
only while connecting over MQTT or MQTT over the Web-
Socket protocol. AWS IoT also introduced tags for managing
resources. These tags are similar to attributes with key-value
pair, however, tags are not used for defining authorization.
Hence, tags are not considered in our model. IoT permissions
(IoT-PRMS) are a set of permissions on IoT things, shadows,
and topics that specifies what operations (MQTT and Shadow
operations) are allowed for IoT objects. IoT objects comprise
things, shadows, and topics as shown in Figure 3. These
permissions are specified in a Policy (POL) which can be
attached to certificates and thing groups. Through certs and
thing groups, authorization policies are applied on things and
physical devices. There are two types of policies assigned to
certificates and thing groups. First, directly assigned policies,
captured by directPOL relation that explicitly assigns poli-
cies directly to certificates and thing groups. Second, there
are implicit effective policies (specified by effGpol(g : G) and
effThpol(th : Th)) derived based on hierarchical groups.
TheAuthorization Function for a specific operation op is

represented as Authop(s : S, tr : TR) for a given source s and a
target tr. The source and target can be a device, thing, shadow
or a topic. The propositional logic based policy language for
specifying ABAC policies is also defined in Table 2. Based
on different types of IoT entities (source and target entities) in
the IoT space, different authorization communication prop-
erties for various operation as supported by AWS IoT are
defined in Table 2. The authorization function and policies
depend on specific application scenario, such as smart home,
smart industry, smart manufacturing, etc. and are defined
accordingly.

In the following section, to demonstrate our proposed
model and ABAC authorization policies, we present a Smart
Industries use case scenario and its implementation in AWS
IoT platform utilizing the AWS IoT edge computing service,
AWS Greengrass to provide local connection and communi-
cation at the edge of the network.

IV. A FUTURE SMART INDUSTRIES USE CASE
In this section, we present a smart industrial IoT use case,
specifically a connected oil refinery including various sce-
narios within this use case that align with the industries of the
future. We first describe the use case and associated scenarios
and then demonstrate a proof-of-concept implementation that
shows how our proposed ABAC AWS IoT access control
model is used to enable secure fine-grained access control in
the context of a real-world smart future industry.

7https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-
variables.html
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FIGURE 4. An overview of a smart oil refinery.

A. OVERVIEW
In the oil refinery industry, the facilities are operated 24 hours
a day, 365 days a year. The size of an oil refinery can be
equivalent to a hundred football fields combined, employing
hundreds of employees in the refinery [50]. While there
are thousands of pieces of equipment in an oil refinery,
in our use-case we focus on a subset of these equipment
such as tanks, valves, pipes, and pumps. We present a smart
oil refinery which comprises various users–employee, man-
ager, worker, and smart devices–smart watch, smart valves,
pumps and oil tank. There are several scenarios within this
use case which we will discuss later in the implementation
section.

Since a significant amount of work is performed by
employees or workers in such a complex ecosystem, human
errors are inevitable and may result in catastrophic results.
It is estimated that 70% of the accidents in the oil and
gas industry occur due to human error. Some of the major
factors that cause such accidents are miscommunication,
physical exhaustion, inadequate supervision, and misinfor-
mation resulting in false alarms or notifications [51]. There-
fore, it is crucial to integrate smart devices, such as sensors
on valves and oil tanks, and smart pumps which can be
turned on or off remotely. This enables users and machines
to perform actions automatically and efficiently [52]. Cur-
rently, IoT devices and applications are critical to future
manufacturing and oil-gas industries. Using smart devices,
industry employees can remotely control and communicate
with these devices in an effective way as well as monitor
employees’ health who work in hazardous conditions. Under
normal operations, smart machines can automatically per-
form desired tasks and reduce employee’s repetitive works
while maintaining employee safety and continuous industry
operations. For example, messages from various devices are
routed and filtered to specific users (managers, workers, etc.),
so that they are not overwhelmedwith a huge amount of infor-
mation and a large number of false alarms generated in the
system [53].

One of the critical aspects of the oil refinery industry is
the safety of employees. It is essential to monitor employees’
health in real-time and provide assistance when needed due
to use of dangerous chemicals and other hazardous situations.
Employees canwear smart wearable IoT devices that can con-
tinuously track their individual health parameters and auto-
matically send notifications to respective parties and request
for help in case of emergency. For example, if an employee’s
heart rate is very high and blood oxygen is declining then
a notification will be sent to connected ambulance through
employee’s smart watch or a connected edge cloudlet (which
is deployed at the edge network closer to the employee
and wearable devices (e.g., smart watch) are connected to
these cloudlets.) However, integrating smart IoT devices can
expose security vulnerabilities which can be exploited by
attackers [54]. For instance, if an unauthorized user discovers
a vulnerability to access a device and manipulate the way it
behaves in an oil refinery, serious consequences like loss of
life, or even explosions may occur. Therefore, we utilize our
proposed ABAC model to secure smart oil refinery use case
scenarios and depict its applicability in a real-world smart
industry through a proof-of-concept implementation in the
AWS IoT platform.

Figure 4a (or left side) represents simple working pro-
cess of an oil refinery. At first, crude oil is imported to
the factory as shown in Section 0, then it is distilled
into many different kinds of oil, which later flows into dif-
ferent treatment processes (represented as various sections
Sections 1 to 7 in the Figure 4a). Finally, the pro-
cessed oil is transported to the storage unit Section 8 for
sales. Figure 4b (or right side) shows the process of refining
the oil including various devices, pumps, valves, and oil
tanks. Within this use case, we consider scenarios from two
main perspectives: first smart machines and devices in the
refinery, and second wearable IoT devices associated with
the refinery employees, which can be further categorized as
manager, maintenance, and production worker. As per the
first perspective, the use case scenarios discuss how smart

VOLUME 9, 2021 107211



S. Bhatt et al.: ABAC for AWS IoT and Secure Industries of Future

devices and associated sensors control the oil flow based on
valve pressure and vibration rates and detect if there is any
leakage in oil tank based on oil level in the tank and oil
flow measured in ‘‘Gallon Per minute’’ (GPM). Based on the
data collected from smart devices and specified conditions,
pump can be turned on or off as needed in the scenario. For
example, in Figure 4b, first the oil is heated to a desired
temperature through the furnace, and once it has reached
the temperature, the Pump on each pipeline will be turned
on to increase pressure which will transport the oil to its
destination tanks through specific valves. The corresponding
Inlet Valve or Outlet Valve must be opened to let the oil
flow in or out of the respective oil tanks. However, we need
to define attributes for different types of entities (refinery
devices and user devices) and specify attribute-based access
control policies for authorizing operations on inlet and outlet
valves to securely enable the flow of oil in and out of the oil
tanks as well as operations on other devices by users (through
their individual devices, e.g., smart watch) and other refinery
devices.

Another perspective is based on user-wearable devices,
where a smart watch can receive notifications and send mes-
sages to perform specific tasks and/or get desired device
information in the refinery. The conditions to perform spe-
cific actions on a device along with particular authoriza-
tions required to perform such actions are defined in the
attribute-based policy (shown later in Figure 8 in next
section).

B. USE CASE AND ABAC AWS IoT MODEL MAPPING
Here, we map the smart oil refinery use case entities and
scenarios as per the ABAC AWS-IoTAC model entities,
attributes, and operations for our proof-of-concept implemen-
tation. In the smart oil refinery, there are employees who per-
form operations, manage and maintain devices/machines for
accomplishing various tasks as shown in Figure 4. Employees
are categorized into three main types of users:
• Manager: These are assigned to specific sections in the
refinery and manage each section that they are assigned
to and supervise staff, operate required plant processes
and equipment.

• Maintenance: The maintenance employees diagnose,
identify, and repair devices when they behave abnor-
mally or if there is an issue.

• Production Worker: The production workers ensure
that the oil quality meets the standards and processes
operate properly. They communicate with the Manager
and Maintenance to provide updates and resolve any
issues.

Employees (Manager, Maintenance, and Production Worker)
have smart watches, which are user devices (D) (IoT Devices
in ABAC AWS IoT model). An attribute (ATT) for smart
watch could beUserTypewhose values can beManger, Main-
tenance, or ProductionWorker. Besides, there would be other
attributes which can be defined as needed based on the use
case scenario.

In this use case, we consider that users can send and
receive messages for performing operations on devices and
get information or notification through their smart watches.
Moreover, they can send messages and trigger actions on
other smart devices. Therefore, an employee can perform
an action or operation on a specific device or receiving
a notification from other devices through his/her smart
watch. An employee can also manually interact with the
connected machines or devices, if needed. Here, we mainly
focus on device to device (user devices and refinery devices)
interactions/communications scenarios.

Next, we discuss different types of IoT Devices (D) in
the use case. For each physical device, there is a virtual
counterpart in the cyber space. In the ABAC AWS-IoTAC
model, these virtual counterparts are specific things (Th) and
shadows (Sh) associated with the physical IoT devices. These
things can further be grouped into thing groups (G). The
following IoT devices are used in this smart oil refinery.
• Watch: A wearable smart watch is provided to every
employee by the smart oil refinery. It monitors the health
parameters of the employee (i.e., employee’s heart rate,
movement, and body temperature) and their surround-
ings to ensure his/her safety in the refinery. When there
is any abnormal health data or conditions affecting
the employee, the smart watch will send notifications
to the nearest medical center and their managers to
inform about the situation. These smart watches are also
capable of sending messages to refinery machines for
performing specific actions (OPs), such as activate the
machine/device (e.g., turn on the valve), or get device
data (e.g., get the oil level in tank, etc.). Similarly,
the smart watch can receive messages and notifications
from connected machines whenever there is a scenario
that needs employee attention. For example, if the device
in a specific section of the refinery malfunctions or
enters into an unsafe state, then a worker in that section
will receive a notification about it and can send a mes-
sage to turn it off.

• Oil Tank: In an oil refinery, the amount of oil in a
Oil Tank (connected device (D)) always needs to be
maintained at a specific level. The oil tank should never
be drained out entirely since it could cause heating
and equipment issues. On the other hand, excessive oil
storage could result in an overflow of oil which may
trigger critical conditions, such as a fire in the refinery.
Therefore, it is necessary to maintain the oil level and
safe working conditions in the refinery using the Inlet
Valve and Outlet Valve for the Oil Tank. Whenever
the Oil Level is low, the Inlet Valve needs to be open
to let the oil flow into the tank from another source,
and when the Oil Level is high, the Outlet Valve needs
to be open so that the oil flows into a different tank
from another destination. Based on different Oil Levels,
different types of employees are notified with different
messages. For example, when the Oil Tank has a low
or high oil level, it only needs to inform the Production
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Worker working in that section to check and fix the
situation.
In addition, to check any leakage, the difference between
outflow and inflow in the tank needs to be measured
and is given as ‘‘Gallon Per Minute’’, or, ‘‘GPM’’ in
the use care. If there is any discrepancy between the
inflow and the outflow while comparing the oil level,
then it means that there is leakage in the oil tank in that
specific section. Depending on the severity of the leak-
age, notifications can be sent to maintenance workers to
repair the leak, and also inform other workers for their
safety. The leakage can also trigger automated response
from the Inlet and Outlet valves (e.g., open or close the
valve) to minimize loss and possible damage.

• Valves and Pump: To ensure an efficient and safe pro-
cess of transporting oil, the vibration and pressure levels
along the pipeline need to be maintained at specific
levels, as shown in Figure 4b. To measure the vibration
and pressure levels, various sensors and actuators are
placed on the valves along the pipeline in each section.
The two main causes of damages along the pipeline are
low pressure and/or a high vibration rate. For instance,
if the sensors at the Inlet Valve or Outlet Valve detect low
pressure, the Pump needs to be turned on. If there is a
high vibration rate detected at the Valve, the Pump will
need to be turned off. The process to turn the Pump On
or Off could be autonomous based on the sensor values.

It is critical to secure devices and ensure only authorized
entities can send and receive messages to and from devices
while also securing the data associated with the smart oil
refinery. These devices are simulated and connected to the
AWS IoT and has Things and Shadows associated with them.
The above entities have specific attributes (ATT) defined
for them. Using these attributes and their values, we define
the ABAC policies (POL) for specifying the permissions
for each entity. Furthermore, these devices can be grouped
into different Thing Groups (G), which may have sub-groups
within the Thing Groups, thus creating a group hierarchy.
The Thing Groups can also have attributes which are inher-
ited by sub-groups and things associated with that group.
These devices communicate using the MQTT protocol as
supported by the AWS IoT service. The MQTT protocol
utilizes a publish-subscribe paradigm and have a set of
Topics (T) created for communication purposes. Therefore,
in our use case, we create generic topics where the devices
can send (or publish) messages and receivemessages (by sub-
scribing to those specific topics). We also utilize the reserved
AWS topics in AWS IoT platform. We discuss these details
in our proof-of-concept implementation in the next section.

V. IMPLEMENTATION AND RESULTS
This section presents the implementation details of our
industrial IoT use case utilizing our proposed AWS-IoT
ABAC model on the AWS-IoT Platform. To implement this
smart refinery use case, we utilize current capabilities of the
AWS IoT service, AWSGreengrass service for enabling edge

FIGURE 5. System architecture.

computing capabilities, and also build a novel ABAC policy
decision point (PDP) and policy enforcement point (PEP)
using the AWS Lambda service for realizing the capabilities
of our ABAC AWS-IoTAC model in AWS IoT.

A. SYSTEM ARCHITECTURE
Figure 5 represents system architecture along with the com-
ponents of our proof-of-concept implementation. We sim-
ulate the oil refinery physical devices: Oil Tanks, Valves,
Watches, and Pumps, using the AWS Device SDKs8 which
were deployed on virtual machines (VMs). For each physical
device, we create virtual Things in AWS IoT and these things
have shadows associated with them. There can be more than
one shadow for each thing in AWS IoT. However, for this use
case, we consider one shadow for each thing. For each phys-
ical device, their corresponding virtual IoT thing, and their
shadows, we define attributes based on the characteristics of
these entities. These attributes and their values are utilized
in the ABAC authorization policies. Further, we group things
into groups and sub-groups with specific attributes for each
group. This forms a group hierarchy and allows attribute
inheritance. These are administrative tasks and will be dis-
cussed later in detail in the Administrative Phase.

We utilize the AWS Greengrass to enable edge computing
and communication between physical devices. The Green-
grass service was used to implement our model, as detailed
in the performance evaluation subsection later. First, physical
devices need to be registered with the AWS cloud. Once
the registration is complete, these devices connect to the
AWS Greengrass which holds a copy of physical devices’
shadows. These are edge virtual objects. All the data from
the devices is stored at the edge on the AWS Greengrass
service which allows local computation. The data is synced
with the cloud periodically when the Internet connection is

8https://github.com/aws/aws-iot-device-sdk-python
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available and/or when user/administrator syncs data manu-
ally. The AWS Greengrass also hosts the Lambda function
and authorization policy which acts as a PDP and PEP. When
there is any access request from a device or entity, or on the
device or entity, the ABAC authorization policy needs to be
evaluated as per the attributes of those entities (entity request-
ing access and target entity) and the decision (allow access
or deny access) is made and enforced. The lambda function
on the Greengrass inspects the payload messages sent from
devices using the MQTT protocol, and queries the attributes
of specific entities to allow or deny actions/operations on
those entities. If there is no match found in the authorization
policy, then the messages cannot be published and is rejected,
and therefore, no actions will be performed.

The attribute-based authorization policies restrict access to
services and operations in the oil refinery, such as sending and
receiving messages, sending notifications to specific entities.
There are single or multi-level policies needed for secur-
ing these entities and operations. For enabling fine-grained
access in the smart oil refinery, we define policy rules for
each type of refinery devices that allow or deny specified
actions on specific devices and sending notifications to the
relevant group of employees. We simulate different Oil and
GPM Levels for Oil Tank, Pressure and Vibration rates
for Valves, and Heart Rates and Requests for employees.
Besides, we also defined the basic policy in the AWS IoT
service for various IoT operations, such as connect, publish,
subscribe, and receive messages for IoT devices. There are
also specific subscriptions that need to be defined in the
AWS Greengrass to enable communication between devices,
Greengrass, and cloud. However, in this paper, we mainly
focus on the attribute-based authorization policies specified
based on our ABAC AWS-IoTAC model and deployed as an
external service deployed in Greengrass.

B. IMPLEMENTATION PHASES
The implementation of our ABAC AWS-IoTAC model
involves two phases: administrative phase and operational
phase. In the administrative phase, we discuss the group
hierarchy, assign things to the group, attributes/policy inher-
itance from parent group to child groups and to the thing
in the group, storing attribute locally, and creating external
policy. The operational phase covers how thing groups, thing
attributes, policy, and lambda functions are used to authorize
IoT operations from and on smart oil refinery devices, i.e., Oil
Tank, Valve, Pump, and smart Watch.

1) ADMINISTRATIVE PHASE
Here, we discuss the administrative aspects of our implemen-
tation which simulates the smart oil-refinery. There are sev-
eral admin tasks from creating things, thing groups, attributes,
and policies to be able to query the attributes and store them
locally for fast policy evaluation. We first create the devices
(i.e., Oil Tank, Valves, Watch and Pump) using the AWS IoT
SDKs and simulate the data generated from these devices.

FIGURE 6. Group hierarchy in smart oil refinery.

As an administrator, we also need to create Things, Thing
Groups and their attributes in AWS IoT.

Figure 6 shows different things, thing groups, and
sub-groups as a group hierarchy along with their direct and
inherited attributes. In this group hierarchy, the oil refinery
named Factory A is divided into two main Thing Groups:
Machine and Employee based on the types of IoT devices.
The Machine Group is further divided into sub-groups – Oil
Tank Group, Valve Group, Pump Group. Additionally, the
sub-group can have other sub-sub groups. For instance,
the Valve group has the sub-group of Inlet or Outlet Valve.
The Employee Group has sub-groups Manager, Mainte-
nance, and Production Worker. A group inherits all the
attributes of its parent groups above it through the hierarchy.
When a device (represented as a thing) is added to a group,
the device inherits all the assigned group attributes through
group hierarchy along with its own attributes. For example,
a smart sensor named Sensor1 has the following attributes.

’Manufacturer’: ’Acme Cooperation’,
’Model’:’2’

The above JSON format implies that Sensor1 has two
attributes, Manufacturer and Model, assigned to it
with values Acme cooperation and 2 respectively. However,
in Figure 7, Sensor1 has other attributes as well. These
attributes are inherited from its parent groups as per the
group hierarchy. When Sensor1 is assigned to the Inlet
Valve group as shown in Figure 7, it will inherit all the
attributes of the Inlet Valve group, which has the attribute
SpecificationType. In addition, Inlet Valve group has
parent group Valve, thus it will inherit its parent group’s
attributes, i.e., DeviceType. The Valve group is assigned
to the Machine Group, which has attribute ParentType,
so Valve group will inherit the ParentType. The final set
of attributes of Sensor1 based on its group hierarchy includes:

’Manufacturer’: ’Acme Cooperation’,
’Model’:’2’, ’ParentType’:’Machine’,
’DeviceType’:’Valve’,’SpecificationType’:
’Inlet’

The same applies to the Employee group and Watch_1.
Initially,Watch_1 has the following attributes:

’Manufacturer’:’Cooperation B’,
’ID’: ’19456 ’, ’DeviceType’: ’Watch_1’
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FIGURE 7. Attribute inheritance from group.

FIGURE 8. Attribute-based custom policy.

After being assigned to the Production Worker group,
Watch_1 attributes will be updated as follows.

’Manufacturer’:’Cooperation B’,
’ID’: ’19456 ’, ’DeviceType’: ’Watch’,
’ParentType’: ’Employee’, ’UserType’:
’Production Worker’

Once things, groups, and attributes are defined, we specify
authorization policies. For our smart oil refinery, we define
the custom ABAC policy based on our ABAC AWS-IoTAC
model to apply ABAC policies in AWS IoT. The custom
ABAC security policy is shown in Figure 8.

Generally in AWS, authorization policies are in JSON
format with a key and its value(s). We also utilize the JSON
format for specifying our custom ABAC policy for the smart
oil refinery. Figure 8 shows the policy file with specific

keys and their values. The top-level keys are Machine and
Employee which determine the type of devices (connected
machines or user’s wearable devices). These keys represent
the Machine Group and Employee Group and allow to check
whether a machine is sending its state or a smart watch of
a factory worker is sending messages. The next key level
represents the DeviceType attribute, which is Oil Tank, Valve,
and Watch. For these keys, the values represents conditions
and actions that are generated based on the attributes of
these devices and their associated data. By separating the
‘‘Machine’’ and ‘‘Employee’’ as the top-level keys followed
by other various sub-keys, it is easier and more efficient to
parse the policy and determine the authorized action(s) to
be performed. There are different conditions based on the
type of device and attributes. For example, if it is determined
that a device is in the Machine Group and the device is Oil
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Tank (Source) which sends a message with GPM (Attribute)
equal to 0, then there is no leakage and no action is needed.
However, if the GPM is less than 1 but greater than 0, it indi-
cates there is a small leakage and a notification is sent to
the destination which could be the Maintenance group of
employees with the message: ‘‘Small Leakage, along with
the name of the device.’’ Additionally, it would turn off
associated Outlet Valve for inspection. If the GPM is greater
than 1 which indicates that there is a major leakage, then
device notifies all the employees including Manager, Pro-
duction Worker, and Maintenance. At the same time, close
operation is sent to both the Inlet Valve and Outlet Valve
and turn off the Pump. In the real world, this is similar to
the shutdown process of a smart oil refinery to prevent an
explosion. Similarly notifications and actions are specified
for Oil Tank based on the Oil_Level. For the Valve, there
are two conditions specified based on Pressure and Vibration
levels in the pipelines where actions are to turn the Pump
‘‘ON’’ or ‘‘OFF’’ respectively, and notifications are sent to
respective destinations which are specific employees.

Another group is Employee Group which has the smart
watch, there are three rules–first, based on the heart rate of the
employee which represents the health status of the employee.
For example, when the watch detects that the employee has a
heart rate higher than 120, it will send a notification message
to Topic ‘‘Medical’’. Users and/or devices who are subscribed
to the Medical topic will receive the message about the high
heart rate of the employee. The second case is for watch in
Employee Group and the policy rules are based on UserType
attribute. The possible values for the UserType attribute are
Manager, ProductionWorker, andMaintenance. For example,
if an access request is from a watch whose UserType attribute
value is ProductionWorker orMaintenance, then it is allowed
to read all the machines states including Oil Tank, Valve,
Pump, and other connected devices in the factory. However,
it can only publish messages to specific devices– Valve and
Oil Tank within the same section (section is an attribute for
all devices which represents the section (e.g., 1, 2, 3, etc.)
they belong to). The Production Worker can’t publish to the
Valve or Oil Tank in other sections or other devices from the
same section if they are not authorized, i.e., there is no rule
for it in the policy file. If the UserType is Manager for the
watch, then it can read the status of all machines and can
also publish messages to them. Similarly, administrators can
specify various actions and notifications on different types of
smart devices in various IoT domains based on their attributes
and specific conditions.

As discussed earlier, the policy along with policy decision
and enforcement points are deployed at the edge on the AWS
Greengrass service. However the attributes are defined in the
AWS IoT service while creating things and groups in cloud.
Therefore, for local authorization policy evaluation when the
Internet is not available, attributes need to be queried from
AWS IoT Core and stored locally at Greengrass. This also
allows fast and efficient authorization decisions. In our imple-
mentation, we cache the devices names and attributes locally

from the cloud to guarantee the data is available. We store
them in two JSON files as follows.
• data.json: This file stores the thing name and their cor-

responding attributes ( their value(s)) in the smart oil refinery
factory.
• section.json: This file stores a list of thing names of spe-

cific smart watch devices that are corresponding to UserType
Manager, Production Worker, Maintenance in each section
and keep a track of section attribute values for the watches.

Both of these locally cached files need to be updated
periodically either manually upon request or automatically at
certain intervals.

2) OPERATIONAL PHASE
In this phase, we present two scenarios within the smart
oil refinery factory. First scenario depicts how devices are
authorized to report their states to their shadows and actions
are triggered based on those updates on other devices as per
the specified policy. Second scenario shows how a user’s
request access using their smart watch on specific devices in
the refinery are evaluated and authorized (allowed or denied)
as per the ABAC policy.
Scenario 1: Devices state updates on Shadows
Figure 9 shows a notification scenario based on the update

message fromOil_Tank1. The following message, along with
the device’s attributes is sent fromOil_Tank1 to its shadow in
Greengrass which then triggers the Lambda function using a
defined rule.

{"state":{"reported": {"Oil Level":
"95.1278011", "GPM": "0", "Time":
"2020-12-19 14:11:40.930681" }}}

In addition, the Oil_Tank1 has the following attributes:

"Factory_Location":"A", "Section" : "0",
"ParentType":"Machine",
“Manufacturer”: “CompanyA”
"DeviceType":"Oil_Tank",
"Correspond_Pump": "Pump1",
"Inlet": "Valve1",
"Outlet": "Valve11, Valve12"

In the Policy JSON document in Figure 8, there are
different conditions for Oil_Tank1 based on Oil Level and
GPM. For instance, if the Oil Level is greater than or equal
to 95, then two actions will be triggered, first to close the
corresponding Inlet Valve, and second, to open the Outlet
Valve. It also sends a notification to the production worker
with the message – ‘‘High Oil Level’’. Now identifying the
specific values depends on the attributes of the tank and
valves. The attributes of the Oil_Tank1 and valves can be
accessed immediately by accessing the data.json file (which
stores all the attributes of things). The policy and attributes
allow us to find exactly what Outlet Valve and Inlet Valves
needs to be opened or closed. Based on the action policy and
attributes of the Oil_Tank1, the Outlet Valve named Valve11
and Valve12will be opened, and the Inlet Valve named Valve1
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FIGURE 9. Employee notification.

will be closed. Below is the sample payload message that will
be sent to Valve11 and Valve12 at their corresponding shadow
topics aws/thing/valve11/shadow/update and
aws/thing/valve12/shadow/update:

{"state":{"desired":{"state":"on"}}}

The shadow topics for each thing in AWS IoT are reserved
topics. Besides the reserved topics, there are also other topics
that can be created on the fly and used in different sce-
narios. Additionally, for the same condition, the policy also
evaluates that the Production Worker needs to be notified
about it. The notification with a specific payload (notifi-
cation message) is sent to the smart watch of the respec-
tive employee based on the smart watch attributes to check
if the employee is a Production Worker and is working
in the same section or not (identified using section.json
file).

Figure 9 represents an example of employee notifi-
cation scenario. The Oil Tank Oil_Tank1 has the fol-
lowing attributes: Factory_Location, Section,
GroupType, DeviceType and Watch devices has the
following attributes: Factory_location, Section,
GroupType, UserType, DeviceType. Generally,
an employee can work in one or more sections, and multiple
sections are separated by a commas in Section attribute
values. For example, Employee 1’s Watch device is Watch1
which has attribute Section with value 3,4,5. It means
that this employee works at Section 3, Section 4,
Section 5 at the same time. Assume that Oil_Tank1
has a low Oil Level of oil storage, thus, it will notify to
each employee who works and/or has responsibility in that
Section 0. Watch2, Watch3, Watch4, and Watch6 will
be notified by publishing an update message with specific
payload to their own corresponding reserved shadow topics
which are as follows.

$aws/things/Watch2/shadow/update
$aws/things/Watch3/shadow/update
$aws/things/Watch4/shadow/update
$aws/things/Watch6/shadow/update

Another scenario is when the smart watch sends a mes-
sage reporting employees’ health parameters. Suppose that an
employee has a heart rate of 130 and according to the policy
shown in Figure 8, it will identify that the Employee has a
high heart rate. However, in this critical situation, themessage
will be published to a general Topic = notify/Medical
and the healthcare providers and emergency services are
subscribed to this topic. Once the message is published to
a topic, it is forwarded to all devices who have subscribed
to that topic. There are two main benefits in this case. First,
messages can still be sent to users (employees) watches if they
are subscribed to notify/Medical topic. Furthermore,
using general topics, messages can be routed beyond a smart
factory and could be sent to other services, such as Simple
Notification Service (SNS) in AWS cloud which would send
SMS message to an on-site doctor or hospital professional
for immediate assistance. However, employee’s health related
data is highly privacy sensitive, this service need to use secure
channels, such as private topics with specific attributes. Using
customized topics with specific attributes, we can secure
access to these topics and their associated data from specific
users, devices, or clients by specifying fine-grained ABAC
policies using Topic attributes and attributes of other entities.
Scenario 2: Request from Users to access Devices
Another scenario is when users request to access a

device/machine in the refinery. It is critical to check and
authorize each of these requests.

Figure 10 represents an example of user authorization.
Suppose that the user Anna wants to read the states of the
Oil_Tank1. Using her smartwatch (Watch1), she will publish
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FIGURE 10. User authorization request cases.

her request as amessage to thewatch’s shadow topic as shown
below:

{"state":{"reported":{"Action":"Read",
"Target":"Oil_Tank1"}}}

This request will be evaluated by the Policy Engine and
Lambda in Greengrass based on the policy and determine if
the request from the user Anna should be accepted or denied.
As shown in Figure 10, the request is evaluated based on
the Watch’s attributes and policy. As per the policy (shown
in Figure 8), if the watch device has UserType as Production
Worker, then it can read Machines (which is any kind of
smart machine, e.g., Oil Tank, Pump, or Valve) and pub-
lish messages to any of the two devices: [Oil Tank, Valve].
In this case, the source is a smart watch whose UserType
is Production_Worker, and the section of the Oil_Tank1 is
included in the section attribute value of theWatch_1, soAnna
is authorized to perform desired action.

However, other users who have different attributes which
do not satisfy the policy will not be authorized to read the
device’s states. For example, Bob is not authorized because
the Factory_Location attribute for Bob and Oil_Tank are

different. Another user, Ceb is not authorized to read machine
states since he tried to read it through another smart wearable
device, such as Helmet. The request might have been sent
by a malicious user in the factory or through a compromised
device. David is not authorized because his UserType is Sci-
entist and not Production Worker, therefore rejected. Emma
is not allowed to read Oil_Tank1 since she is not working in
that section, i.e., Section 0.
To summarize and depict the sequence of IoT operations in

the above scenarios, we present a general sequence of events
for any device sending its state to lambda through its device
shadow in Figure 11. Initially, Device 1 publishes its sensor
information to its Shadow (1). The sensor information update
message triggers the Lambda functionwith Policy Engine (2),
and once authorization decision is made, a specific message
is sent to a particular topic specified in the policy (3.1). When
a specific message is published to a topic (3.1), all the devices
and clients (e.g., applications) that have subscribed to that
topic would receive themessage (3.2), which is Device 3 here.
For example, when an employee in the refinery is detected to
have a high heart rate, a message will be published to the topic
Medical by the Policy Engine. The published message
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FIGURE 11. External services authorizing sequences.

TABLE 3. AWS set up parameter information.

on this topic can trigger external applications, such as SNS
service in cloud that sends messages to an onsite Medical
clinic. Simultaneously, themessage will be published to some
smart watches that subscribe to that topic. For instance, if a
message is published on Medical topic, then Managers
and Production Worker are notified about the medical issue
through their smart watches in the refinery.

C. PERFORMANCE EVALUATION
We now present the performance evaluation and results of our
proof-of-concept implementation. In our proof-of-concept
implementation, we created the policy decision point (PDP)
and policy enforcement point (PEP) using the Lambda on
AWS Greengrass. Table 3 lists the AWS system parameters
to provide better understanding of the performance metrics
shown here. We deployed our AWS Greengrass server on
a local VM with 1 VCPU and 2GB RAM. As per the
AWS Greengrass documentation,9 a device with a minimum

9https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-
up.html#greengrass-v2-requirements

FIGURE 12. Separate payload comparison.

of 256 MB disk space, 96 MB RAM, Java 8 or greater,
GNU C Library (glibc) version 2.25 or greater, and have root
permissions should be able to run theAWSGreengrass server,
and hence our proposed scheme. The number of devices
mentioned in the table is the number of actively involved
devices with the lambda function. A device sends MQTT
messages to its own shadow and forwards these messages to
lambda function, or the device can receive MQTT messages
published from the lambda function and/or other devices.
To evaluate the performance of our ABAC AWS-IoTAC
model, we conducted tests and experiments on AWS Green-
grass which includes the PDP and PEP. We calculated the
time starting from the IoT device message arrival on Green-
grass till the policy enforcer returns the action and notification
to specific entities (devices, applications, or other clients).
In our experiments, we had some outliers due to a cold
start [55], which is a time penalty due to creating a new con-
tainer and loading libraries. We discarded these outliers from
our evaluation, and once a Greengrass device is at constant
load, the time penalty from cold start diminishes as resources
are reused and libraries stay loaded in memory. We measure
the time performance by taking a sample of 5000 messages.
Specifically, each time a device sends messages at a specific
rate to lambda service, a total of 5000 messages will be sent.
The result is shown in Figure 12, Figure 13, and Table 4.
The sample size guarantees that the result is within 99%
confidence interval with a margin of error of 2%, where we
excluded no more than 3% of the sample due to the cold start.

In order to simulate our devices, we sent a certain amount
of messages per second from one device to lambda. The
parameter values in device messages are continuously varied
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TABLE 4. Policy enforcer evaluation time.

FIGURE 13. Combine payload comparison.

to guarantee that all the policies are tested and evaluated
during the execution. We examined how different sizes (with
one key, two keys, or more than two keys) of uploadmessages
from devices would impact the policy evaluation time. For
example, the Oil Tank will publish to its shadow the GPM’s
data, or the Oil Level, but not both at the same time. The
results are shown in Figure 12. The time taken by policy
enforcer in all cases on average is less than 25 µs. The
average time for policy evaluation seems to be consistent
regardless of number of messages sent per second based on
our experiments. In case there are several keys and many
associated conditions for those keys in the JSON policy file,
the policy evaluation may take more time. For example, there
are more policy decision points associated with Oil Level and
GPM values of Oil Tank compared to the Watch and Valve,
therefore, the average time it takes to evaluate the policy
would be higher. However, there isn’t a significant difference
as reflected by the standard deviations shown in Table 4.
We also examined test cases with varying payload message

sizes being sent to the shadows. In our use case scenarios, Oil
Tank contained two parameters, GPM and Oil Level, though

in a real-world scenario, there can be multiple integrated sen-
sors which could measure multiple parameters, e.g., temper-
ature, pressure, gas, vibration, etc. The Figure 13 shows how
increased payload size affected the performance of the policy
engine. In this scenario, there were 15 to 120 messages sent
from a simulated device but the messages contained only two
parameters, which were separately evaluated, thus resulted
in two policy decisions which were independently evaluated
and averaged. However, the average processing time over
the number of decisions made was unchanged. Based on
our experiments, there was no evidence that increasing the
payload size would increase the time to evaluate and enforce
each policy. For the smart watch requests, we check source
and target devices’ attributes to match the attributes as per
the policy to make authorization decisions. Even with this
case, there is no significant impact on the performance as
shown in Table 4. The average time for a request to be pro-
cessed is ranged from 19 µs - 23 µs with standard deviation
ranged from 4 µs - 6 µs. This could be explained by the
process of caching devices’ attributes locally in Greengrass
which enabled quick access to the source attributes and target
attributes for evaluating the policy and making authorization
decisions. It should be noted that message payloads from
different sensors and devices are independent and do not
impact one another.

D. DISCUSSION AND LIMITATIONS
The main advantage of the AWS IoT ABAC model is
to enable more flexible access control based on various
attributes of entities including devices, things and shadows,
and device groups. With ABAC approach, we can also utilize
environmental attributes (e.g., time of day, device location,
user location, system risk level, etc.) in making decision for
allowing or denying source actions on specific targets. How-
ever, in ABAC model implementation, a common challenge
is managing entity attributes and their values. Our model
is developed specifically for AWS IoT and attributes and
policies can be defined within AWS cloud through its existing
services, such as AWS Lambda, thus it allows to manage the
attributes and policies more efficiently. We demonstrated it
with our proof-of-concept model implementation in a smart
oil and gas factory.

Overall, the experimental results show that our model
is feasible and applicable to be implemented in real-world
scenarios. There is minimal performance overhead with the
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addition of custom ABAC policy engine including PDP and
PEP at the edge of the network (AWS Greengrass). All the
devices connect to Greengrass and policies are defined and
enforced in the Greengrass enabling first point of access
control in the Cloud-enabled IoT platform. Edge computing
is essential for enabling industries of the future and provide
real-time communication (machine-to-machine, users-to-
machines) and response to the users. Here, we demonstrated
two specific scenarios in smart oil refinery simulated using
the AWS IoT, Greengrass, and Lambda. However, these ser-
vices have their own limitations. AWS Greengrass has a lim-
itation of 2500 devices per Greengrass group. Therefore, in a
real-world implementation, this limitation may require mul-
tiple deployments and coordination between various Green-
grass groups to completely encompass the large smart oil
refinery. Initially Greengrass was limited to 250 devices and
recently expanded to 2500, this is a limitation imposed by
AWS and may expand further in the future.

Besides, the ABAC policy engine also needs to be further
optimized to be scalable as per the growing needs of smart
industries. We also envision that ABAC policy engine may be
built as a separate service in the future that can enable ABAC
policies to be used with any real-world cloud enabled IoT
platform given there is a way to define and store attributes
for different entities. In the future, we plan to study other
cloud-IoT platforms and apply our ABAC approach to enable
dynamic and more fine-grained access control for them.

It must be noted that, there are several other hardware or
software specific limitations on IoT devices, such as power
and energy constraints. In this paper, we mainly focused
on the security aspects, and developed a fine grained AWS
IoT access control model definition and implementation in
a cloud enabled IoT architecture with edge computing capa-
bilities, and no on-device policy evaluation, or computation
as discussed in the performance evaluation Subsection V-C.
Although, power evaluation aspects are very important and
must be considered when deploying these security solutions
in the real world, these are not considered and are outside the
scope of this research. This is one limitation of this work,
which we plan to explore in our future research that will
primarily focus on IoT devices capabilities and efficiency
when implementing such mechanisms in real world settings.

VI. CONCLUSION
In this paper, we developed an ABAC model for a
real-world cloud-enabled AWS IoT platform. We extended
the AWS-IoTAC model with ABAC capabilities including
its existing capabilities to enable more fine-grained access
control in AWS IoT platform. We demonstrated our ABAC
AWS-IoTAC model in a future industry use case, a smart
oil refinery. With rapidly widening IoT ecosystem, we dis-
cussed the vision of Industries of the future and also designed
our use case to be compliant with this vision. For this pur-
pose, we developed different scenarios and simulated rel-
evant IoT devices in the oil refinery. We implemented a
proof-of-concept implementation of our model in AWS IoT.

Our performance evaluation results demonstrate the viability
of our model and are promising for realizing and imple-
menting our ABAC AWS-IoT model in real-world cloud-IoT
platforms. Ultimately, lessons learned from developing an
ABAC model based on AWS IoT will be valuable for similar
development in other platforms and further benefit studies on
a platform-independent model as well.
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