
Multi-Layer Authorization Framework for a
Representative Hadoop Ecosystem Deployment

Maanak Gupta, Farhan Patwa, James Benson and Ravi Sandhu
Institute for Cyber Security and Department of Computer Science

University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
gmaanakg@yahoo.com,{farhan.patwa,james.benson,ravi.sandhu}@utsa.edu

ABSTRACT
Apache Hadoop is a predominant so�ware framework to store and
process vast amount of data, produced in varied formats. Data
stored in Hadoop multi-tenant data lake o�en includes sensitive
data such as social security numbers, intelligence sources and med-
ical particulars, which should only be accessed by legitimate users.
Apache Ranger and Apache Sentry are important authorization sys-
tems providing �ne-grained access control across several Hadoop
ecosystem services. In this paper, we provide a comprehensive
explanation for the authorization framework o�ered by Hadoop
ecosystem, incorporating core Hadoop 2.x native access control
features and capabilities o�ered by Apache Ranger, with prime
focus on data services including Apache Hive and Hadoop 2.x
core services. A multi-layer authorization system is discussed and
demonstrated, re�ecting access control for services, data, applica-
tions and infrastructure resources inside a representative Hadoop
ecosystem instance. A concrete use case is discussed to underline
the application of aforementioned access control points. We use
Hortonworks Hadoop distribution HDP 2.5 to exhibit this multi-
layer access control framework.

CCS CONCEPTS
•Security and privacy→ Security requirements; Access con-
trol; Authorization;

KEYWORDS
Access Control; Hadoop Ecosystem; Big Data; Data Lake; Role
Based; A�ributes; Object Tags
ACM Reference format:
Maanak Gupta, Farhan Patwa, James Benson and Ravi Sandhu. 2017. Multi-
Layer Authorization Framework for a
Representative Hadoop Ecosystem Deployment. In Proceedings of SAC-
MAT’17, June 21–23, 2017, Indianapolis, IN, USA, , 8 pages.
DOI: h�p://dx.doi.org/10.1145/3078861.3084173

1 INTRODUCTION
In past several years, enterprises have grown their reliance on Big
Data for critical �nancial and strategic decisions. An estimate in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA
© 2017 ACM. ACM ISBN 978-1-4503-4702-0/17/06. . . $15.00.
DOI: h�p://dx.doi.org/10.1145/3078861.3084173

IDC’s Digital Universe study, predicts world’s data size to reach 44
ze�abytes by 2020 [10]. Multi-format Big Data is collected from
diverse sources including sensors, tennis rackets, web browsing, so-
cial media, power meters etc., to improve organization’s operational
e�ciency, revenue and to o�er personalised customer experience.
Leveraging full potential and gaining valuable insights of such
massive data sets require enormous infrastructure for storage and
computation in real time manner.

Apache Hadoop [3] o�ers a distributed, scalable and cost-
e�cient open-source framework for storing and analysing struc-
tured, unstructured and semi-structured data in variety of for-
mats. Resilient storage and rich analytical capabilities provided by
Hadoop and its ecosystem components (Apache HBase, Apache
Hive etc.) makes it a prime choice as a Big Data processing system
in government and industry. Such wide acceptability of Hadoop
ecosystem comes with the responsibility to make it secure against
cyber a�acks.

�e Multi-tenant Hadoop Data lake stores sensitive information
including credit card numbers, medical records and social security
numbers (SSNs), requiring the cluster to be protected against cyber
threats. Unauthorized access to data assets can have serious impact
on its con�dentiality and integrity. An inside user can masquerade
by running malicious code to impersonate Hadoop core services
including HDFS NameNode, DataNode or YARN ResourceManager.
A nefarious user can also modify, view or delete other users’ ap-
plications. It is also possible to execute denial of resources a�ack,
where a malicious user can submit lengthy jobs which consume all
the cluster resources preventing other users from submi�ing new
jobs. �e challenges to mitigate these threats include distributed
and partitioned �le system and computing, scale of Hadoop clus-
ter, multi-tenant environment and multi-level access of same data
elements to di�erent users. Correspondingly, Hadoop ecosystem
has deployed several security measures including authentication,
authorization, data encryption and network security.

Access Control [13][20] mechanisms are vital in restricting users
and applications access to authorized resources. Apache Hadoop
deploys a multi-layer authorization framework using Access Con-
trol Lists (ACLs) to authorize users to access data, infrastructure
resources and services in Hadoop cluster. Apache Ranger [5] and
Apache Sentry [6] are two widely deployed systems to enforce �ne
grainer authorization across several Hadoop ecosystem services.
Both systems o�er a centralized administration console to store and
manage security policies for multiple ecosystem components. �ey
provide plugins which are hooked to ecosystem services to decide
and enforce access control, based on the policies pulled from cen-
tral policy server. Sentry supports role-based authorization model,
whereas Ranger assigns permissions to users and groups.

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

183

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3078861.3084173&domain=pdf&date_stamp=2017-06-07

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA M. Gupta, F. Patwa, J. Benson and R. Sandhu

Figure 1: Hadoop Daemons Access Con�guration

In this paper we present a uni�ed explanation for authorization
mechanisms inHadoop ecosystem primarily focusing on data access
via Apache Hive. We demonstrate the capabilities using multiple
Apache projects as a part of Hortonworks Hadoop distribution HDP
(Hortonworks Data Platform) 2.5 sandbox [14]. For our purpose
we assume data is already ingested in the cluster.

�e paper is organized as follows. Section 2 discusses and demon-
strates individual access control points o�ered in Hadoop ecosys-
tem. A complete multi-layer authorization architecture is presented
in Section 3. We discuss a concrete use case in Section 4. Section 5
reviews related work, followed by conclusions in Section 6.

2 HADOOP ECOSYSTEM ACCESS
CONTROL MECHANISMS

Hadoop ecosystem deploys Defense in Depth approach to enforce
access control security mechanisms across the cluster. A user is
allowed to access data services and Hadoop daemons in the cluster
through service level authorization layer. Data stored in HDFS
(Hadoop Distributed File System) is secured by POSIX-style �le
and directory permissions or extended ACLs. Cluster resources
are segregated through YARN capacity (or fair) scheduler queues
which restrict applications to use limited resources and also pre-
vent application modi�cations from unauthorized users. Apache
Ranger further o�ers data masking, �ltering and dynamic contex-
tual information to achieve �ner-grained authorization. �is section
discusses and demonstrates these access control mechanisms using
Hortonworks HDP 2.5.

2.1 Hadoop and Data Services Access
Once a user is authenticated, the �rst layer of access control mecha-
nisms is provided by service layer authorization. �is layer controls
access to ecosystem services (Apache Hive, HDFS, Apache HBase)
inside Hadoop cluster, much before data underlying the services
is accessed. It also checks if a user is allowed to access Hadoop
daemons such as HDFS NameNode, YARN ResourceManager, and
ApplicationMaster, to submit applications or to query status. Sev-
eral Hadoop core services also need communication with each other
for task updates or cluster resource status, which is also controlled
by this layer. �is cross-service authorization prevents rogue pro-
cesses from impersonating as Hadoop daemons and gaining control
to data and resources.

By default, service level authorization is disabled in Hadoop.
It is enabled in core-site.xml con�guration �le by set-
ting property hadoop.security.authorization = true in

Figure 2: WebHDFS Access via Apache Knox

all the nodes of Hadoop cluster. �e ACLs for various
Hadoop services (daemons) are set in hadoop-policy.xml
�le. An example Hadoop service access control property is
security.client.datanode.protocol.acl. �is property lists
the set of users which can access HDFS DataNode, required for
data block recovery. An example of cross Hadoop services ACL
property is security.resourcetracker.protocol.acl, which is
used when YARN ResourceManager and NodeManager communi-
cate with each other for resource monitoring. �e recommended
value for this ACL is ‘yarn’ service user. It should be noted that all
Hadoop services run under a service user Unix account, and the
ACLs for cross service should include permissions for the service
users. Using Apache Ambari [1], these properties can be changed
under HDFS con�guration. Figure 1 shows sample Hadoop services
ACL properties. �ese ACLs include allowed users and groups in-
formation, with a special value ∗ including all users or groups. Sim-
ilar ACLs can also be speci�ed for blocked services or users. Note
that some ACLs, for example, security.job.task.protocol.acl
used by Map and Reduce tasks to communicate with YARN Node-
Manager, may give permissions to all users (∗) as the identity of
applications running these tasks cannot be enumerated in advance.

Apache Knox [4] o�ers an API gateway to provide access to sev-
eral Hadoop ecosystem services (WebHDFS, Hive etc.) to external
users. It provides a single access point to Hadoop REST services
by intercepting user access requests and enforcing policies to
allow or deny users to access services. Internal ports to ecosystem
services are not accessible to end users. Apache Knox validates
permissions of users to access cluster services much before data
or other resource access decisions are made, thereby preventing
unauthorized access at early stage of user request lifecycle. As
shown in Figure 2 (a) (Apache Ranger logs), a user guest trying
to access HDFS NameNode service via Knox by issuing a list
�les curl command curl -iku guest:guest-password -X GET
‘https://10.x.x.255:8443/gateway/default/webhdfs/v1/
?op=LISTSTATUS’ is denied access as the user is not allowed
to access HDFS service inside the cluster protected by Apache
Knox gateway. Once the policy is set in Apache Ranger (for Knox

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

184

Multi-Layer Authorization Framework for a Representative
Hadoop Ecosystem Deployment SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

Figure 3: Hive and HDFS Access Con�gurations

service) to allow access to WebHDFS service to guest user (Figure
2 (b)), the user will be allowed access to HDFS NameNode. Similar
policies can be set for other ecosystem services such as Apache
Hive, HBase, YARN ResourceManager or Ambari, to allow external
users to access cluster. Hence, the perimeter security o�ered by
Apache Knox enables secure access to several ecosystem services
from users outside the cluster. It should be noted that Apache Knox
gateway can protect multiple clusters and o�er single endpoint to
all services across clusters.

2.2 Data Objects Access
�e backbone of Hadoop ecosystem is fault-tolerant and distributed
�le system for storing data, called Hadoop Distributed File Sys-
tem (HDFS). With YARN architecture, same data can be read di-
rectly from HDFS or through several data engines (or services)
such as Apache Hive or Apache Pig, to perform operations on
supported data model. Data layer authorization (using Apache
Ranger plugins) ensures access to HDFS directly or via di�erent
data engines, to authorized users and applications. HDFS supports
both POSIX style permissions (read, write and execute) on �les
and directories, and extended Access Control Lists. ACLs autho-
rization is disabled by default in HDFS which can be enabled by
se�ing dfs.namenode.acls.enabled = true in con�guration
�le hdfs-site.xml for HDFS NameNode. ACLs can be set on �les
and directories using setfacl. To check ACLs on a particular �le
getfacl command is used. For example, to add ACL permission
read on �le marketing for members in group execs and to get the list
of permissions on �le marketing, following commands are issued:

hdfs dfs -setfacl -m group:execs:r-- /marketing
hdfs dfs -getfacl /marketing
group:execs:r--

Apache Ranger plugin can be enabled for HDFS service via
Ranger con�guration in Apache Ambari, which will man-
age and enforce security policies on HDFS �les and direc-
tories [15]. Security administrator has option to con�gure
layers of authorization controls to check access to HDFS
by se�ing property xasecure.add-hadoop-authorization in

Figure 4: Policy Creation using Grant Command

Figure 5: Authorization Options and Impersonation

ranger-hdfs-security.xml under Ranger con�guration in Am-
bari. When the property is set to true, authorization engine will
check HDFS ACLs if Ranger policy is not de�ned or denies access,
whereas property set to false will make decision based only on
Ranger policies without checking HDFS ACLs.

When a user a�empts to access data through data services such
as Apache Hive, access policies for both data service and HDFS
are checked. As shown in Figure 3, when a user tries to access
table using Apache Hive, Hive Ranger policies are �rst checked
followed by HDFS Ranger policies for the corresponding data �les.
When the value of xasecure.add-hadoop-authorization is set
to false, only HDFS Ranger policies are checked. If Hive Ranger pol-
icy allows access and HDFS Ranger denies, the user is not allowed
to operate on the data. Both Hive and HDFS permissions must
allow access to data. If xasecure.add-hadoop-authorization =
true and HDFS Ranger policy does not allow access, HDFS POSIX
permissions are further checked to make decision. Apache Ranger
audit logs will re�ect the policies (HDFS or Ranger ACLs) used to
make access decision. �erefore, a user may need to have access
authorization at multiple data service levels to perform operations
on data items. Security administrator can set policies in Apache
Ranger using UI, REST API or SQL grant/revoke commands. Ranger
UI o�ers drop-down menu for several ecosystem services where
administrator can select resources, users and actions along with
contextual or policy conditions. SQL grant command issued by
administrator (using command line tools such as beeline) will be
intercepted by Apache Ranger plugin and will create corresponding
policies. As shown in Figure 4, admin user raj ops issuing com-
mand grant select, update on table foodmart.customer to
user holger gov; will generate policy in Ranger allowing user
holger gov for select and update action on table foodmart.customer.

Most of the services in Hadoop ecosystem have in-built autho-
rization mechanisms, besides the centralized access control frame-
work provided by Hadoop core, Apache Ranger and Apache Sentry.
For example, Apache Hive has storage-based authorization, SQL
standard based authorization and default-mode authorization mod-
els. Storage-based authorization uses the �le system permissions

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

185

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA M. Gupta, F. Patwa, J. Benson and R. Sandhu

Figure 6: Tag Based Policy in Apache Ranger

to be applied for metastore and is primarily used when Hive acts as
a table storage layer. �is mode only provides authorization at ta-
ble, database or partition level. SQL standards based authorization
provides a �ne-grained control to columns, rows or views by using
grant/revoke commands, and uses HiveServer2 to enforce controls.
Both these modes can be used simultaneously depending on the
requirements and use case. In our demonstration, we use Ranger
as the authorization provider for all the services in Hortonworks
HDP 2.5. As shown in Figure 5(a), Apache Ambari provides drop-
down in Hive con�guration to select the authorization model which
will automatically change the required con�guration properties in
hive-site.xml and hiveserver2-site.xml.

As Hadoop data storage layer is managed by HDFS, it is possible
that user might be required to access data only via certain data
engines such as Apache Hive or Pig, and not directly in HDFS.
For example, business analyst users may get access to data using
HiveQL via Apache Hive query but may not be allowed to access
corresponding data �les at HDFS level through MapReduce jobs (as
HiveQL query changes to MapReduce job). In such requirements,
the end user issuing HiveQL command is changed to ‘hive’ service
user (user running Apache Hive service) for underlying HDFS level
data access. Another use-case may need users to have data access
at both Apache Hive and HDFS level. Such user impersonation
is managed by changing hive.server2.enable.doAs property in
Ambari Hive con�guration, which changes the user running jobs
at HDFS level. As shown in Apache Ranger audit logs (Figures 5(b)
and (c)), with hive.server2.enable.doAs set to false, raj ops is
end user running HiveQL command which changes to ‘hive’ service
user when accessing HDFS data through correspondingMapReduce
job. For hive.server2.enable.doAs = true, end user raj ops is
accessing data at both Hive level and HDFS [16].

Besides resource-based policies (set on tables, �les or queues)
o�ered in Ranger, resource tags (a�ribute values) can be used to
create tag-based policies. Apache Atlas [2] is used to associate
a�ribute values with resources in ecosystem based on content, ex-
piration time or sensitivity of resources. �is metadata information
(tag) can be used to create tag policy using tag service in Ranger.

Figure 7: Data Masking and Row Filtering

�is tag service is then a�ached to several data services to use
tag-based policies. Once a�ached, all the resources associated with
a particular tag will be secured by corresponding tag-based policy.
As shown in Figure 6, con�dential tag is created and assigned to
column ssn in Apache Atlas, and a tag-based policy on con�dential
tag is created under tag service in Ranger. Once the policy is set,
Apache Hive (or other service) is con�gured to support tag-based
policy by selecting tag service in Hive con�guration under Ranger.
With this change, Apache Hive will support both resource and tag-
based policy. When user raj ops tries to access object ssn, Ranger
audit logs will re�ect the tag policy used along with the tag name.
In this way, instead of creating separate policies across each data
service for same resource, single tag policy can be used for all ser-
vices. Tags can also have a�ributes such as expiration time which
will reject access to associated object a�er certain time or date.

Apache Ranger can also set policies to perform column masking
and row �ltering on data items in Hive for certain users. Column
masking helps to conceal data columns having sensitive information
from users and applications by replacing data with random char-
acters. Several masking options including complete mask, partial
mask, hash mask, and date mask, are available. With row �ltering,
some rows are hidden from users based on the where clause and
conditions set in policies. In Figure 7, column masking and row
�ltering are demonstrated together. Here, for raj ops user, masking
has been done on account num column in table customer. Also
row �ltering has been applied where only rows with fname=Sheri
are to be displayed. With these policies, the resultant access when
raj ops issues select * from customer command is shown in
Figure 7(b). It can be seen that account num is masked and only
rows with fname=Sheri are displayed as a result for user raj ops.

2.3 Context Enricher and Policy Conditions
Some authorization use-cases may require �ner grained access to
resources not only based on the subjects and objects, but also on
certain environmental or contextual information. For example, it
may be required to give access to a user when the user is at a speci�c
location, between a particular time frame or from a designated IP
address. Apache Ranger provides context enricher and condition

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

186

Multi-Layer Authorization Framework for a Representative
Hadoop Ecosystem Deployment SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

Figure 8: Geo Location Based Ranger Policies

evaluators to realize dynamic policies, which change the access
results based on contextual information. Context enricher is a java
class which is used to enhance user access request by adding extra
information such as location or user’s IP address, based on mapping
stored in a separate text �le. Condition evaluators are used to add
the access under certain conditions in Ranger policies [9]. To enable
context enricher and condition evaluation, service de�nitions of
each Hadoop ecosystem service should be enhanced with enricher
and evaluation information. As shown in Figure 8(a), a Ranger
policy is created to allow all actions to user raj ops on all tables
in database foodmart when its requesting location is outside US.
When raj ops tries to access table in foodmart database, RangerHive
pluginwill intercept this request and based on raj ops ip address and
the text �le (which maps IP address to location and shown in Figure
8(b)), context enricher will add location information of raj ops to
the access request [18]. When Ranger plugin evaluates this request
based on the policy (shown in Figure 8(c)) cached from central
server, it will check the subjects, objects and operations involved
and also if policy condition is satis�ed. If the policy condition is not
satis�ed it will deny the access request even if other parameters are
satis�ed. Deny conditions can also be speci�ed in Ranger by se�ing
enableDenyAndExceptionsInPolicies = true in de�nitions of
ecosystem services. �erefore, a policy can be formulated where
a user can be denied access to resources based on speci�c user
locations. Similarly, �ne-grained access policies involving a�ributes
can be de�ned using context enricher and condition evaluator hooks
in Ranger. Role-based access control can be implemented using
these hooks where a text �le can have the current user to roles
mapping and the policy condition can require the user to have a
certain role to perform actions on resources. In such case, when a
user requests access, context enricher will add roles of user to the
request and evaluator will check against roles in policy condition
to allow or deny access.

Privacy policies may require certain data-sets combinations
not revealed to speci�c users. For example, SSN should not be
shown together with name and address to sales users. Such a re-
quirement can be encapsulated using prohibition policies, which

Figure 9: Prohibiting Data Combination

Figure 10: YARN�eues Sample Con�guration

can be de�ned using policy conditions and helps prevent certain
data sets combination to be accessed together. Apache Ranger in-
cludes RangerHiveResourcesAccessedTogetherCondition con-
dition evaluator which can check if the particular data sets can be
accessed together. As shown in Figure 9, a deny condition can be
set in a policy which prevents user raj ops from performing a select
operation on fname and account num column together in customer
table in foodmart database.

Note that the data-level access controls discussed in subsection
2.2 and 2.3, take e�ect only a�er the user is allowed to access Hive
service through service-level authorization.

2.4 Cluster Resource and Application Access
Multi-tenant Hadoop cluster requires optimized sharing of re-
sources among several tenants. In Hadoop 2.x, YARN capacity
(or fair) scheduler de�nes queues with resource limits so that users
submi�ing application in one of the queues can access a fraction of
total cluster resources. YARN queues further prevent rogue users
from submi�ing application to Hadoop cluster and prevent users
from killing or modifying other user applications. Capacity (or fair)
scheduler queues have ACLs associated with themwhich determine

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

187

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA M. Gupta, F. Patwa, J. Benson and R. Sandhu

Figure 11: YARN�eues Authorization in Ranger

the set of users who can submit applications or who can administer
submi�ed application. By default, owner of application and queue
administrator can modify or view applications submi�ed to a queue.
�ese queues are hierarchial in nature where the resources allo-
cated to the parent queue are distributed among child queues. ACLs
de�ned at parent level are descended downwards to child queues,
while applications are always submi�ed at leaf queue levels. YARN
ACLs can be de�ned in YARN capacity scheduler con�guration in
Apache Ambari. Apache Ranger also provides plugin to enforce
access control on YARN queues.

As shown in Figure 10(a), YARN ACLs are enabled by se�ing
yarn.acl.enable = true under resource manager con�guration
in Apache Ambari. Also root is set as admin for YARN cluster
via yarn.admin.acl property. As shown, YARN capacity sched-
uler con�guration has two new child queues created (default and
new�eue) under root parent queue. We have set root user as
the administrator of root queue. �e hierarchial nature of queues
will descend the administrative privileges of root user to all the
child queues, thereby making user root as administrator for both
default and new�eue also. None of the users should be allowed
to submit application to root queue (leave blank) as that will allow
them to submit in all child queues also. It should be noted that
two ACLs, one for administration and other for submit application
operation, should be set for each YARN queue. User raj ops is now
set to submit application only to default queue, while maria dev
can administer and submit applications in new�eue child queue.
With this capacity scheduler con�guration, when each user issues
mapred queue -showacls command to see the list of queues along
with permissions, it can be seen in Figure 10(b) that root is admin
for all three queues while raj ops can only submit to default queue
and maria dev has administrator and submit application permis-
sions on new�eue. Similar access control requirements can be
achieved using Apache Ranger via YARN service plugin. As shown
in Figure 11, a policy is set where user maria dev is allowed to
submit application in new�eue under root parent queue.

With aforementioned con�gurations, when user maria dev
tries to access data by issuing a HiveQL command select
min(customer.account num) from foodmart.customer using
Hive service, its corresponding MapReduce (or Tez) job will be
submi�ed to new�eue child queue (Figure 12(a)). If user raj ops
tries to kill or view the details of the job submi�ed by maria dev,
raj ops is not allowed as the user is neither the admin nor the

Figure 12: �eue and Job Access Control

Figure 13: Node Labels and YARN�eues

owner of job (shown by Ranger audit logs in Figure 12(b)). ACLs
can also be included in the con�guration �les of application submit-
ted, to restrict access to the application. For MapReduce job, ACLs
are �rst enabled by se�ing mapreduce.cluster.acls.enabled
= true. �e list of users or groups which can modify
or view job is set using mapreduce.job.acl-modify-job and
mapreduce.job.acl-view-job properties respectively.

Cluster nodes can be assigned node labels for restricting
node access to certain users and applications. By associating
labels, sub-clusters can be created so that user applications
can be executed on certain set of nodes, speci�c to application
requirements. �ese node labels are associated with YARN
capacity scheduler queues such that all the users submi�ing
jobs to a particular queue will run their jobs only on nodes with
labels that were assigned to the queue. �ese node labels can
be enabled in YARN con�guration using Ambari. Once enabled,
administrator can issue command to create new labels. For exam-
ple sudo -u yarn yarn rmadmin -addToClusterNodeLabels
"label1(exclusive=true),label2(exclusive=false)" will
add two labels label1 and label2, which can be veri�ed using yarn
cluster --list-node-labels. Here “exclusive=true” means
only the applications running in the queue associated with the
label can use the node. �erefore, if resources are free in that
node, these cannot be used by applications in other queues. Once
label is created it is associated with node-managers using yarn
rmadmin -replaceLabelsOnNode "<node-address>=label2".
Node labels and associated nodes can be checked in YARN
ResourceManager web interface (port 8088) under node labels tab.

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

188

Multi-Layer Authorization Framework for a Representative
Hadoop Ecosystem Deployment SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

Figure 14: Hadoop Ecosystem Authorization Architecture

A�er labels are assigned to nodes, queues should be associated
with node labels via YARN �eue Manager in Ambari (shown
in Figure 13). Here with root as parent queue, and new�eue
and default as children, we have assigned node-label label2 to
default queue. �e capacity speci�es percentage of node resources
(associated with label) that can be accessed by applications in
default queue. As shown in Figure 13, applications in default
queue can access all resources of the node which has label label2.
YARN capacity scheduler con�guration will automatically set
"yarn.scheduler.capacity.root.default.accessible-node-
labels=label2" property. With this con�guration, it follows that
raj ops which was previously allowed to submit application in
default queue, will run all its applications on node with label label2.

3 MULTI-LAYER AUTHORIZATION
ARCHITECTURE

In this section we present a uni�ed authorization architecture in a
Hadoop ecosystem. �is multi-layer architecture outlines how the
individual access control points demonstrated in previous section
�t into ecosystem to o�er ‘Defense in Depth’ approach to protect
cluster resources. Figure 14 shows several layers of access control
decision and enforcement points to authorized access to resources
in services such as Apache Hive and HDFS. Apache Ranger provides
a centralized Policy Administration and Policy Information Point (1-
PAP, 2-PIP) whereas its plugins appended with individual services,
periodically cache policies from policy server and provide Policy
Decision and Enforcement Points (3-PDP, 4-PEP). �e architecture
portrays how several Apache projects work in a coherent manner
to realize multi-layer authorization in a Hadoop ecosystem.

An authenticated user is �rst examined by the perimeter se-
curity layer o�ered by Apache Knox, which checks if the user is
allowed to access services inside the ecosystem. �is external user
interacts with all ecosystem services via single access point REST
API provided by Apache Knox. When a user issues a request, it
is intercepted by Apache Ranger plugin a�ached to Apache Knox,
which checks its policies to decide and enforce access to services
inside the ecosystem. If a user wants to submit an application or to
check application status, the user should be allowed to access YARN
ResourceManager through Apache Knox. If a user issued HiveQL
using a client, the user should be allowed access to Apache Hive
(HiveServer2) when trying to access HDFS �les directly, access to

WebHDFS service (REST access to HDFS) should be allowed. �is is
the �rst layer which a user must pass through, much before access
to data is checked, which helps to restrict users at an early stage.

Once admi�ed through perimeter layer, if user requires data ac-
cess at HDFS layer, permissions for �les and directories are checked
using HDFS Ranger plugin. If a user issues HiveQL command, two
layers of data services are checked: one at Apache Hive level and
other for the corresponding data �les at HDFS level. Both can be
done using Apache Ranger plugin a�ached with each of these ser-
vices. If a user is submi�ing a YARN application, the user should be
authorized to access YARN queues to submit the application. �is
is done a�er YARN ResourceManager access is allowed through
Apache Knox. YARN queue policies are enforced either through
YARN capacity scheduler con�guration or through Ranger plugin.
�is will prevent unknown users from submi�ing jobs in the cluster.
User’s access to YARN queues is also required when HiveQL com-
mand is issued, since the command results in a MapReduce or Tez
job, which is also submi�ed to YARN queues. Since these jobs will
access data in HDFS, owners of the jobs should have permissions
on HDFS �les also. Further, data masking or policy conditions can
be applied at individual services to get �ne-grained access control.

Based on the architecture, it can be understood that several
authorization check points come into play to protect unauthorized
access to cluster resources. We have not discussed cross-service
access between Hadoop core daemons since this does not involve
the user directly, and is mainly enforced using core Hadoop service
ACLs and not through Ranger plugin. Moreover these daemon
processes always run in background and their communication is
essential for the proper functioning of Hadoop ecosystem.

4 USE CASE
In this sectionwe present real world use cases to demonstrate the ap-
plication and con�guration of multiple access control mechanisms
o�ered in a Hadoop ecosystem. We assume users are authenticated
by some external mechanism and data ingestion is already done.

Suppose an Internet of �ings (IoT) provider gathers data from
devices assembled in smart homes. �e data generated from smart
devices is continuously stored in Hadoop Data Lake, which is anal-
ysed by the provider to o�er be�er customer experience. As there
are multiple IoT providers using the same Hadoop lake for storing
and processing their data, security and privacy requirements are
extremely critical. Let us say that the provider has two di�erent
functional users Alice and Bob, Alice belonging to sales and Bob
to data-analyst group. Both users access data in the same Hadoop
cluster with di�erent operational and data permissions. Alice can
only access data using Apache Hive ecosystem service via beeline
client, with no access directly to HDFS data whereas Bob, as a data-
analyst, can run YARN applications inside the cluster and may also
require access to HDFS data directly. �is service level security re-
quirement is achieved by creating Knox policy using Ranger, which
will allow Alice to access Hive service from outside the cluster. An-
other policy will allow Bob to access WebHDFS service and YARN
ResourceManager via Knox gateway as discussed in Subsection 2.1.

Based on Hadoop cluster resources and service level agreement,
cluster administrator is required to assign set of resources to users
from IoT enterprise. �e administrator has to ensure that only

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

189

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA M. Gupta, F. Patwa, J. Benson and R. Sandhu

authorized users are allowed to submit YARN applications and
access data. To accomplish this, cluster administrator creates a
queue-IoT with a set of resources and allows both Alice and Bob
to submit application in queue-IoT using Apache Ranger. Further,
node labels (nLabel1, nLabel2, nLabel3) are assigned to three worker
nodes and queue-IoT is associated with these three labels using
YARN �eue manager in Ambari. Now, whenever Alice issues
a HiveQL command or Bob runs a YARN application inside the
cluster, it will only pass through queue-IoT and will run on three
nodes with set labels. �is con�guration will also ensure that only
Alice and Bob are allowed to submit jobs from IoT enterprise and
they are both assigned a set of resources using capacity scheduler
con�guration and node labels. Further no user is allowed to kill or
modify jobs submi�ed by Alice and Bob. Complete con�guration
to achieve this use case is discussed in Subsection 2.4.

Data generated from IoT devices is stored in HDFS �les.
User Bob is allowed to access all data �les from IoT en-
terprise stored under data-IoT directory. Alice is only al-
lowed select operation on address and temperature col-
umn on table table-thermostat-texas created from �le
file-thermostat-texas in directory data-IoT. Further, only
zipcode part of the address should be visible to Alice. It is also
required to give data access to Alice only when Alice belongs
to Marketing project, since it is possible Alice might be shi�ed
to other department in the organization. To allow Bob to have
all permissions on data-IoT directory, either HDFS POSIX or
ACLs can be used or Apache Ranger plugin can set policy to al-
low all operations on data-IoT directory. �is will ensure that
all applications run by Bob can access all �les in data-IoT di-
rectory. For user Alice, Apache Hive policies are set to allow
select operation on column address and temperature in table
table-thermostat-texas. For displaying only zip-code �eld
from address, data masking is done on the remaining part. Since
the requirement denies direct access of user Alice at HDFS level,
hive.server2.enable.doAs is set to false, which will only allow
hive service user to access HDFS �les and not Alice end user. Here
two layers of data access are checked: for Hive service, access is
checked for Alice and for HDFS, access is checked for Hive ser-
vice user. �erefore policy for Hive service user should be also
set in Apache Ranger. Alice’s current project membership is re-
quired to allow access to table table-thermostat-texas. �is is
ensured by use of context enricher and condition evaluators. �e en-
richer will use a text �le with the current user and project mapping.
Security administrator will create a policy including marketing
as the policy condition. Whenever Alice will try to access table
table-thermostat-texas, context enricher will add Alice’s cur-
rent project to the access request using the text �le, which will be
checked against policy condition by the evaluator to allow or deny
access. Security administrator can also use tags to create policy. In
this case, Apache Atlas will be used to create a tag tag-IoT and will
be associated with columns address and temperature. A policy
will be created on tag-IoT under Tag service in Ranger, which will
enforce access to columns address and temperature. Subsection
2.2 and 2.3 discuss additional details about these con�gurations.

�ese use-case requirements clearly illustrate how a layered au-
thorization framework (involving service, data and resource access)
is applied and con�gured to restrict unauthorized resources access.

5 RELATEDWORK
Several books, reports and papers have been published [8, 11, 12,
19, 21–23] to discuss security aspects of Hadoop ecosystem and Big
Data. Hortonworks HDP (Hortonworks Data Platform) [14] uses
Apache Ranger as authorization framework. Cloudera [7] CDH
(Cloudera Distribution including Apache Hadoop) o�ers Apache
Sentry [6] as central access control component. MapR Converged
Data Platform [17] o�ers Hadoop with data placement control.

6 CONCLUSION
In this paper we discuss and demonstrate authorization capabilities
provided by a representative Hadoop ecosystem deployment. �e
multi-layer authorization framework o�ered by Apache Hadoop
and Apache Ranger covering services, data, cluster resources and
application access is presented. �is document can be read as
a reference guide to understand access control capabilities and
how they are achieved in Hadoop ecosystem using Apache Ranger.
We have also discussed real world use-cases which exhibit the
application of individual access control points in a coherent manner,
including extensions enabled by context enrichers.

ACKNOWLEDGMENTS
�is work is partially supported by NSF grants CNS-1111925, CNS-
1423481, CNS-1538418, DoD ARL Grant W911NF-15-1-0518 and
�e Texas Sustainable Energy Research Institute at UTSA.

REFERENCES
[1] Apache Ambari. h�ps://ambari.apache.org/.
[2] Apache Atlas. h�p://atlas.apache.org/.
[3] Apache Hadoop. h�p://hadoop.apache.org/.
[4] Apache Knox. h�ps://knox.apache.org/.
[5] Apache Ranger. h�p://ranger.apache.org/.
[6] Apache Sentry. h�p://sentry.apache.org/.
[7] Cloudera. Cloudera Distribution Hadoop. h�ps://www.cloudera.com/.
[8] Devaraj Das, Owen O’Malley, Sanjay Radia, and Kan Zhang. 2011. Adding

Security to Apache Hadoop. Hortonworks, IBM (2011).
[9] Balaji Ganeshan and Alok Nath. 2015. Dynamic Policy Hooks in

Ranger. h�ps://cwiki.apache.org/con�uence/display/RANGER/Dynamic+
Policy+Hooks+in+Ranger+-+Con�gure+and+Use. (2015).

[10] John Gantz et al. 2012. Digital universe in 2020: Big data, bigger digital shadows,
and biggest growth in the far east. IDC iView: IDC Analyze the future (2012).

[11] Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2017. Object-Tagged RBAC
Model for the Hadoop Ecosystem. In Proc. of IFIP DBSec (To appear). Springer, 18
Pages.

[12] Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2017. POSTER: Access Control
Model for the Hadoop Ecosystem. In Proc. of ACM SACMAT (To appear). ACM, 3
Pages.

[13] Maanak Gupta and Ravi Sandhu. 2016. �e GURAG Administrative Model for
User and Group A�ribute Assignment. In Proc. of NSS. Springer, 318–332.

[14] Hortonworks. Hortonworks Data Platform. h�ps://hortonworks.com/.
[15] Robert Hryniewicz. 2016. Best Practices in HDFS Autorization with Apache

Ranger. h�ps://hortonworks.com/blog/best-practices-in-hdfs-authorization-
with-apache-ranger/. (2016).

[16] Robert Hryniewicz. 2016. Best Practices in Hive Autorization with Apache
Ranger. h�ps://hortonworks.com/blog/best-practices-for-hive-authorization-
using-apache-ranger -in-hdp-2-2/. (2016).

[17] MapR. Converged Data Platform. h�ps://mapr.com/.
[18] Madhan Neethiraj. 2016. Geo-location based policies. h�ps://cwiki.apache.org/

con�uence/display/RANGER/Geo-location+based+policies. (2016).
[19] Owen O’Malley, Kan Zhang, Sanjay Radia, Ram Marti, and Christopher Harrell.

2009. Hadoop Security Design. Yahoo, Inc., Tech. Rep (2009).
[20] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.

Role-based access control models. IEEE Computer 29, 2 (1996), 38–47.
[21] Ben Spivey and Joey Echeverria. 2015. Hadoop Security. Protecting your Platform.

” O’Reilly Media, Inc.”.
[22] Tom White. 2012. Hadoop: �e De�nitive Guide. ” O’Reilly Media, Inc.”.
[23] Chandhu Yalla et al. 2016. Big Data: Intel IT’s Secure Hadoop Platform. (2016).

Demonstration SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

190

https://ambari.apache.org/
http://atlas.apache.org/
http://hadoop.apache.org/
https://knox.apache.org/
http://ranger.apache.org/
http://sentry.apache.org/
https://www.cloudera.com/
https://cwiki.apache.org/confluence/display/RANGER/Dynamic+Policy+Hooks+in+Ranger+-+Configure+and+Use
https://cwiki.apache.org/confluence/display/RANGER/Dynamic+Policy+Hooks+in+Ranger+-+Configure+and+Use
https://hortonworks.com/
https://hortonworks.com/blog/best-practices-in-hdfs-authorization-with-apache-ranger/
https://hortonworks.com/blog/best-practices-in-hdfs-authorization-with-apache-ranger/
https://hortonworks.com/blog/best-practices-for-hive-authorization-using-apache-ranger
https://hortonworks.com/blog/best-practices-for-hive-authorization-using-apache-ranger
-in-hdp-2-2/
https://mapr.com/
https://cwiki.apache.org/confluence/display/RANGER/Geo-location+based+policies
https://cwiki.apache.org/confluence/display/RANGER/Geo-location+based+policies

	Abstract
	1 Introduction
	2 Hadoop Ecosystem Access Control Mechanisms
	2.1 Hadoop and Data Services Access
	2.2 Data Objects Access
	2.3 Context Enricher and Policy Conditions
	2.4 Cluster Resource and Application Access

	3 Multi-layer Authorization Architecture
	4 Use Case
	5 Related Work
	6 Conclusion
	References

